Templet: A Collaborative System for
Knowledge Graph Question Answering over Wikidata

Francisca Suéarez
fsuarez@dcc.uchile.cl
DCC, Universidad de Chile
Santiago, Chile

ABSTRACT

We present Templet: an online question answering (QA) system for
Wikidata. Templet is based on the collaboratively-edited repository
QAWiki, which collects questions in multiple natural languages
along with their corresponding structured queries. Templet gener-
ates templates from question-query pairs on QAWIiki by replacing
key entities with identifiers. Using autocompletion, the user can
type a question in natural language, select a template, and again
using autocompletion, select the entities they wish to insert into the
template’s placeholders, generating a concrete question, query and
results. The main objectives of Templet are: (i) to enable users to
answer potentially complex questions over Wikidata using natural
language templates and autocompletion; (ii) to encourage users to
collaboratively create new templates via QAWiki, which in turn
can benefit not only Templet, but other QA systems.

CCS CONCEPTS

« Information systems — Question answering; Graph-based
database models; Wikis.

KEYWORDS

question answering, Wikidata, knowledge graphs, user interfaces

ACM Reference Format:

Francisca Suarez and Aidan Hogan. 2023. Templet: A Collaborative System
for Knowledge Graph Question Answering over Wikidata. In Companion
Proceedings of the ACM Web Conference 2023 (WWW °23 Companion), April
30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3543873.3587335

1 INTRODUCTION

Open knowledge graphs such as Wikidata [15] make a wealth of
structured data available to the public. Users can search Wikidata
for an entity of interest to see (or even edit) the data about it. The
knowledge graph structure of Wikidata further enables structured
queries that can draw answers not just from a single entity, but
rather from the knowledge graph as a whole. The Wikidata Query
Service [10] then supports evaluating structured queries in the
SPARQL language [8]. The service includes motivating examples

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WWW 23 Companion, April 30-May 4, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9419-2/23/04.

https://doi.org/10.1145/3543873.3587335

Aidan Hogan
ahogan@dcc.uchile.cl
IMFD; DCC, Universidad de Chile
Santiago, Chile

of queries, ranging from a query that lists cats, to a query that lists
genes that predict a positive prognosis in colorectal cancer.

However, most Web users are not familiar with structured query
languages like SPARQL, and will thus struggle to define original
queries. Research on knowledge graph question answering (KGQA)
systems aims to assist such users. KGQA systems receive ques-
tions in natural language and try to directly answer them over
a knowledge graph. Recent approaches exploit advances in Deep
Learning [4], with one such line of research using Neural Machine
Translation (NMT) to translate the user’s question directly into a
structured query over the knowledge graph (see, e.g., [6, 12, 16, 17]).

However, Deep Learning models typically require an extensive
training corpus, which in the NMT case, implies the need for an
extensive parallel corpus of question—query pairs. Unlike natural
languages — where (human) translators have been manually trans-
lating between natural languages for millennia - a parallel corpus
of natural language questions and their corresponding structured
queries does not “naturally occur”. Addressing this gap, authors
have generated large-scale corpora via numerous approaches, in-
cluding the employment of human annotators to generate simple
question—query pairs [2], to paraphrase questions [7], etc.; and
the use of query templates to generate a large number of query
instances by replacing placeholders in the template with specific
entities [7, 9, 12]. The former approach has been limited to simple
questions: generating more complex questions requires more expert
users and more manual effort. The latter approach leads to corpora
with a large number of potentially complex instances, but relatively
uniform ones; when a user subsequently poses a question that does
not correspond to one of the templates used to generate training
examples, the QA system will tend to perform poorly [6].

In this context, we have created QAWikil, a collaboratively-
edited knowledge base of question—query pairs using Wikibase.
QAW ki currently provides questions in both English and Span-
ish, SPARQL queries for Wikidata, annotations of mentions, para-
phrased versions of questions, as well as specific relations between
questions (generalises, specialises, disambiguates, etc.). QAWiki
currently hosts 361 diverse question—-query pairs, with annotated
entity mentions. Though this may seem few, each such pair is hand-
crafted and can be generalised into a template in order to generate
manifold instances; for comparison, DBNQA [9] contains 894 thou-
sand question—-query pairs generated from 215 templates. We aim
to continue expanding QAWiki, with the help of the community.

To attract attention to QAWiki, and to encourage the community
to contribute to it, we foresee the need for a complementary QA
application layered on top of QAWiki. A key design philosophy for
this application was to provide the community with full control and

!http://qawiki.org

https://orcid.org/0000-0001-9482-1982
https://doi.org/10.1145/3543873.3587335
https://doi.org/10.1145/3543873.3587335
https://doi.org/10.1145/3543873.3587335
http://qawiki.org

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

transparency over the questions and their corresponding queries
(and thus the answers they return), allowing users to collaborate on
curating question—query pairs on QAWiki. We see this design goal
as playing into the strengths of using knowledge graphs for QA
versus using, e.g., large language models that are difficult to curate
and explain (though both approaches are indeed complementary).

In this context, we have designed and implemented Templet:
a template-based QA system built over QAWiki. Question—-query
pairs are taken from QAWIiki, and using the mentions that the
latter provides, entities are replaced with placeholders. The user
finds a question template via autocomplete, and upon selecting one,
is presented with an interface to fill the template with entities of
interest via autocomplete. The system supports English and Spanish.
A user who does not find, or is unhappy with, a particular question
or its answers can edit QAWiki or Wikidata accordingly.

2 RELATED WORKS

For reasons of space, we herein focus on template-based KGQA for
complex questions. For a broader discussion of QA, please see the
tutorial by Unger et al. [14] and the survey by Diefenbach et al. [5].
In the context of QA over RDF knowledge graphs, Unger et al.
[13] propose to parse a question into a SPARQL template, whose
entities and predicates are identified and filled in a subsequent step
using statistical techniques. Park et al. [11] use similarity measures
to try to map questions to a predefined list of abstract SPARQL
query templates (e.g., an ASK frame for boolean questions, a COUNT
aggregation for counting questions, etc.). Athreya et al. [1] also
classify questions into pre-defined templates, but rather using re-
cursive neural networks. A number of other QA systems try to
parse the template from the question (see [5] for discussion), which
is a challenging task, particularly with sparse training data.
Templet is more straightforward and transparent than such ap-
proaches. It includes no statistical nor learning techniques. Users
choose a template and then choose what entities they wish to fill
into the template’s placeholders via autocomplete. This approach
depends on having a suitable template available in the QAWiki
repository used; however, state-of-the-art QA techniques for knowl-
edge graphs based, e.g., on NMT likewise often fail if the user poses
a complex question not corresponding to a template seen in the
training set [6]. If no corresponding template is found in the Tem-
plet system, users can choose to add it to QAWiki. Furthermore, to
the best of our knowledge, Templet is the only QA-style system for
Wikidata currently available online: https://templet.dcc.uchile.cl.

3 GENERATING TEMPLATES FROM QAWIKI

In Figure 1, we present an example of a simple question, and a
more complex question from QAWiki.? We include a subset of the
meta-data provided by QAWIiki that are relevant for the purposes of
Templet, where for each question we have the English expression
and mentions (Qep), the Spanish expression and mentions (Qes),
and the query in SPARQL (Qsp). Mentions are annotated with one
or more Wikidata entities (Qx) and properties (P*) independently of
the query; for example, the first query does not use the entity Q8142

2We abbreviate the expression of the second query for presentation purposes. The
query could be greatly simplified by using a combination of ORDER BY and LIMIT 1 if
we did not care about ties; in this case, however, the movies Spartus and Barry Lyndon
are tied as answers, where both are returned by the query shown.

Suarez and Hogan

Q8142,P38 Q916
—_—~— —_——
Qen “What currency does Angola use?"
Q8142,P38 Q916
—_— —_——
Qes “;Qué divisa se usa en Angola?"
Qsp SELECT ?0bj WHERE { wd:Q916 wdt:P38 ?obj }
Q11424 P57 Q2001 P166 Q19020
e e e —_——
Qen “Which movie directed by Kubrick won the most Oscars?"
Q11424 P57 Q2001 P166 Q19020
—_—— —_—
Qes “¢Qué pelicula dirigida por Kubrick gané mas premios Oscar?”

SELECT ?sbj WHERE {
{ SELECT (MAX(?count) AS ?max) WHERE {
SELECT (COUNT(?0bj) AS ?count) WHERE {
?sbj wdt:P31/wdt:P279% wd:Q11424 .
?sbj wdt:P57 wd:Q2001 . ?sbj wdt:P166 ?obj .
20bj wdt:P31#/wdt:P279% wd:Q19020 . }
Qsp GROUP BY ?sbj } }
{ SELECT ?sbj (COUNT(?0bj) AS ?max) WHERE {
?sbj wdt:P31/wdt:P279% wd:Q11424 .
?sbj wdt:P57 wd:Q2001 . ?sbj wdt:P166 ?obj .
20bj wdt:P31#/wdt:P279% wd:Q19020 . }
GROUP BY ?sbj } }

Figure 1: Meta-data for two QAWiki questions

for “currency”, but rather uses the property P38 instead. As QAWiki
uses the Wikibase software, these meta-data can be accessed as
RDF, and a SPARQL query service is provided over QAWIiki.
Templet constructs question and query templates from QAWiki’s
specific instances. For example, from “What currency does Angola
use?”, we construct a template of the form “What currency does ___
use?”, further replacing wd: Q916 in the query with a placeholder. We
do so by identifying entity ids of the form wd: Q* that appear in the
subject or object position of a triple pattern in the query, replacing it
with a placeholder that is associated with its corresponding mention
in the text. For example, for the simple QAWiki question shown,
we would identify the entity wd:Q916, create a placeholder $1 for
it, and associate the placeholder $1 with the mention “Angola”.
The same process applies for both English and Spanish using the
corresponding mentions. In the case of the second question, three
placeholders would be generated, creating the template “Which ___
directed by ___ won the most ___?”, which could be instantiated, for
example, with “Which miniseries directed by Cholodenko won the
most Emmys?” The specific entities to enter into each placeholder
will be chosen by the user in the front-end using autocompletion.
We do not use placeholders for properties as this often (though
not always) creates misleading text-based templates. Taking the
question “What currency does Angola use?”, its template with entity
and property placeholders is “What___ does___ use?”, which works
for “What publisher does The New England Journal of Medicine use?”,
but not for “What piece does smothered checkmate use?” (Wikidata
does not have a “p?e” property but rather states that smothered
mate (Q903961) uses (P2283) knight (Q136)). Furthermore, some-
times property mentions in QAWiki are not continuous. For exam-
ple, in the question “Where was tellurium discovered?”, the Wikidata
property location of discovery (P189) is linked from the mention
“Where * discovered” in QAWIiKki in order to distinguish it from the

https://templet.dcc.uchile.cl

Templet: A Collaborative System for Knowledge Graph Question Answering over Wikidata

Templet

Wikidata autocomplete question answering

species
Which are endemic to ?
What is the fastest of r?
What can have offspring?
What is the longest-living ?
Which has the most ?
What are in the order ?
What are in the same asthe ?

Figure 2: Screenshots of first autocomplete interaction

related question “When was tellurium discovered?”, which invokes
the property time of discovery or invention (P575); the use of * in-
dicates a wildcard of one or more characters in a discontinuous
mention. Other complications relate to the use of inverse, hyponym
or hypernym properties in the query compared with the question,
as well as the use of implicit properties, where the mention “horror
film” implies the property genre (P136). Generalising properties is
thus prone to more problematic cases than generalising entities.

4 TEMPLET FRONT-END

The front-end of Templet is designed around two main interactions.

In the first interaction, the user selects a question template via
autocomplete; for example, if they type “what cu”, they will re-
ceive suggested templates including “What currency does Angola
use?”. We include the original entities in their placeholders as ex-
amples; otherwise some templates become very difficult to under-
stand, such as “Which______ have___ parent ___?” (for “Which
Chilean companies have U.S. parent companies?”). Autocompletion

normalises for capitalisation, accents, punctuation (important for
omitting “¢” in Spanish), often-interchangeable interrogative pro-
nouns (e.g., what <> which), and can also match words in the middle
of a question template, as seen in Figure 2. To implement custom
autocompletion in an efficient way, it is necessary to precompute
and cache templates from QAWiki, which are refreshed each hour;
the front-end also provides links to refresh an individual template
from QAWIki in case changes are made. If a relevant template is
not found, a prompt redirects the user to QAWiki so that they can
optionally add their question for future users to benefit from.
Once the user selects a question template, the second interaction
enables the user to choose entities via autocompletion for each
placeholder. Assume, for example, that the user selects the bottom-
most suggestion of Figure 2: “What species are in the same genus as

the monkeypox virus?”. As per Figure 3, they can use autocomplete
(called via the Wikidata API) to replace the grey entities with ones
of their choosing. In the top-right corner of Figure 3, one can also
see options to view or refresh the QAWiki question.

Assuming the user fills the template from Figure 3 with “What
species are in the same family as the blue whale?” and clicks Search ,

the entity replacements will be filled into the SPARQL query tem-
plate and evaluated on the Wikidata Query Service. The user will
then be presented results as shown in Figure 4. For each result, a
label with a link to Wikidata is presented, along with a description
and image, where available. Results can also be a simple value (e.g.,

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Templet

Wikidata autocomplete question answering

What | species are in the same = family as the | buew ?

blue whortleberry
species of plant

blue whale

species of marine mammal
blue wildebeest
species of mammal

blue water-speedwell
species of plant

Figure 3: Screenshot of second autocomplete interaction

Templet

Wikidata autocomplete question answering

What species are in the same famiy asthe blue whale ?

Search

Search results

humpback whale

species of mammal

fin whale

baleen whale, and second-largest mammal species

sei whale

species of mammal

Figure 4: Screenshot showing a subset of results

a count or boolean); or a table of results. In the top-right corner,
the user can also view the query in the Wikidata Query Service.
Templet also supports contingent questions in QAWiki that check
the assumptions of a question. For example, “When did Jimmy Carter
die?” is contingent on a positive answer to “Is Jimmy Carter dead?”.
Where available, these contingent questions are evaluated by Tem-
plet and flagged to the user if an unexpected answer is derived.

5 EVALUATION

We conducted a usability survey asking users to (a) solve in Templet
“When did Amy Winehouse die?”, “Who played Hermione Granger
in Harry Potter and the Philosopher’s Stone” and “Which collections
outside of Chile exhibit moai?”; (b) continue to use Templet for
questions of their own choice; and thereafter (c) complete a Systems
Usability Scale (SUS) questionnaire [3] responding to usability-
related claims on a Likert scale from 1 (disagree) to 5 (agree). A
Spanish version of the survey was shared in a forum of students and
staff at the Department of Computer Science, University of Chile,
where it received 31 responses. An English version was shared on
the public Wikidata mailing list, receiving 6 responses. The SUS
results for both surveys are listed in Table 1, where a SUS score of
above 68 is considered “above average”. In this setting, the SUS score
was 76.72 for the Spanish survey (n = 31), 59.58 for the English
survey (n = 6), and 74.01 combining all respondents (n = 37).

The end of the survey included a comments section for quali-
tative remarks. A key point of feedback was that when searching
for “When did Amy Winehouse die?” in the first interaction (see Fig-

ure 2), the system would rather suggest “When did Stan Lee die?”,
with the idea that in the second interaction, the entity “Stan Lee”

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Table 1: SUS results (m: mean; s: standard deviation)

ES(31) EN(6) Al(37)

m N m N m N

Claim to evaluate

I think that I would like to use this system 3.53 0.98 2.33 0.52 3.34 1.02
frequently.

I found the system unnecessarily complex 191 1.03 2.67 1.03 2.03 1.05
I thought the system was easy to use. 4.03 0.97 2.67 082 3.82 1.06
I think that I would need the support of a 1.25 0.62 133 0.52 1.26 0.60
technical person to be able to use this system.

1 found the various functions in this system 4.03 1.12 3.00 0.63 3.87 1.12
were well integrated.

I thought there was too much inconsistency 1.94 137 250 1.05 2.03 1.33
in this system.

I would imagine that most people would learn 3.75 1.19 3.33 0.82 3.68 1.14
to use this system very quickly.

Ifound the system very cumbersome to use. 1.78 1.10 2.67 0.82 192 1.10
I felt very confident using the system. 394 111 3.00 1.26 3.79 1.17

Ineeded to learn a lot of things before I could 1.72 0.92 133 0.52 1.66 0.88
get going with this system.

SUS Points 76.72 16.26 59.58 9.67 74.01 16.56

could be replaced by “Amy Winehouse”. Some users struggled with
this, particularly for the first question, and suggested that such
entity labels could be auto-filled in some way. However, this would
not be trivial in the case that the question continues beyond the
first placeholder: it would be difficult to detect where the auto-filled
entity ends, and the rest of the question continues. We rather opted

to add a tooltip to hint that such placeholder labels can be replaced.

6 CONCLUSIONS

We present Templet: a question answering (QA) system for Wikidata
which is, to the best of our knowledge, the only QA-style system
currently available online for Wikidata, and the only such system
that allows users to edit the collection of questions supported. Aside
from answering questions, we believe that Templet can help to
encourage contributions to QAWiki, which in turn can be used
to train and evaluate Deep Learning models for (KG)QA. Templet
could also act as a repository of example queries for the Wikidata

Query Service that can be further personalised with custom entities.

In future work, we will explore ways to auto-fill entities directly
in the first interaction. We also aim to explore selectively using
placeholders for properties. Another idea would be to only suggest
(or prioritise suggestions of) entities that can generate answers
in the context of the template and the other entities selected. It
may also be of interest to support additional result types, such as
graph or map visualisations, etc. Regarding precision/recall, while
this depends on the quality of the template defined, it would be
interesting to see in how many cases the final query corresponds to
the user’s intent. Another idea would be to combine Templet with
a large language model for questions not answerable as a query on
Wikidata, such as procedural questions (e.g., “How to tie a tie?”),
explanatory questions (e.g., “Why is the sky blue?”), etc.

Supplementary material. An online demo of Templet is available
at https://templet.dcc.uchile.cl/. Source-code for Templet can be
found at https://github.com/franpss/qa-autocomplete.

Suarez and Hogan

ACKNOWLEDGMENTS

This work was supported by Fondecyt Project No. 1221926 and
ANID - Millennium Science Initiative Program — Code ICN17_002.
We would like to thank Daniel Diomedi, Lucas Carrasco, Santiago
Mass, Martin Paredes, and everyone else who contributed question—
query pairs that form part of QAWiki and are used by Templet.

REFERENCES

[1] Ram G. Athreya, Srividya Kona Bansal, Axel-Cyrille Ngonga Ngomo, and Ricardo
Usbeck. 2021. Template-based Question Answering using Recursive Neural
Networks. In 15th IEEE International Conference on Semantic Computing, ICSC
2021, Laguna Hills, CA, USA, January 27-29, 2021. IEEE, 195-198. https://doi.org/
10.1109/ICSC50631.2021.00041

[2] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. 2015. Large-
scale Simple Question Answering with Memory Networks. CoRR abs/1506.02075
(2015). arXiv:1506.02075

[3] John Brooke. 1996. SUS - A quick and dirty usability scale. Usability Evaluation
in Industry 189, 194 (1996), 4-7.

[4] Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi,
Jens Lehmann, and Asja Fischer. 2019. Introduction to Neural Network based Ap-
proaches for Question Answering over Knowledge Graphs. CoRR abs/1907.09361
(2019). arXiv:1907.09361

[5] Dennis Diefenbach, Vanessa Lopez, Kamal Deep Singh, and Pierre Maret. 2018.
Core techniques of question answering systems over knowledge bases: a survey.
Knowl. Inf. Syst. 55, 3 (2018), 529-569. https://doi.org/10.1007/s10115-017-1100-y

[6] Daniel Diomedi and Aidan Hogan. 2022. Entity Linking and Filling for Question
Answering over Knowledge Graphs. In Proceedings of the 7th Natural Language
Interfaces for the Web of Data (NLIWoD) co-located with the 19th European Semantic
Web Conference (ESWC 2022), Hersonissos, Greece, May 29th, 2022 (CEUR Workshop
Proceedings, Vol. 3196). CEUR-WS.org, 9-24.

[7] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann.
2019. LC-QuAD 2.0: A Large Dataset for Complex Question Answering over
Wikidata and DBpedia. In The Semantic Web - ISWC 2019 - 18th International
Semantic Web Conference, Auckland, New Zealand, Oct. 26-30, 2019, Proc., Part I
(LNCS, Vol. 11779). Springer, 69-78.

[8] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 Query
Language. W3C Recommendation. http://www.w3.org/TR/sparql11-query/.

[9] Ann-Kathrin Hartmann, Tommaso Soru, and Edgard Marx. 2018. Generating
a Large Dataset for Neural Question Answering over the DBpedia Knowledge
Base. In Workshop on Linked Data Management.

[10] Stanislav Malyshev, Markus Krotzsch, Larry Gonzélez, Julius Gonsior, and Adrian
Bielefeldt. 2018. Getting the Most Out of Wikidata: Semantic Technology Usage
in Wikipedia’s Knowledge Graph. In The Semantic Web - ISWC 2018 - 17th Inter-
national Semantic Web Conference, Monterey, CA, USA, Oct. 8-12, 2018, Proc., Part
II (LNCS, Vol. 11137). Springer, 376-394.

[11] Seonyeong Park, Soonchoul Kwon, Byungsoo Kim, and Gary Geunbae Lee. 2015.

ISOFT at QALD-5: Hybrid Question Answering System over Linked Data and Text

Data. In Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum,

Toulouse, France, September 8-11, 2015 (CEUR Workshop Proceedings, Vol. 1391).

CEUR-WS.org.

Tommaso Soru, Edgard Marx, Diego Moussallem, Gustavo Publio, Andre Valdes-

tilhas, Diego Esteves, and Ciro Baron Neto. 2017. SPARQL as a Foreign Language.

In Proc. of the Posters and Demos Track of the 13th International Conference on

Semantic Systems - SEMANTiCS2017, Amsterdam, The Netherlands, Sept. 11-14,

2017 (CEUR, Vol. 2044). CEUR-WS.org.

Christina Unger, Lorenz Bithmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo,

Daniel Gerber, and Philipp Cimiano. 2012. Template-based question answering

over RDF data. In Proc. of the 21st World Wide Web Conference 2012, WWW 2012,

Lyon, France, Apr. 16-20, 2012. ACM, 639-648.

Christina Unger, André Freitas, and Philipp Cimiano. 2014. An Introduction to

Question Answering over Linked Data. In Reasoning Web. Reasoning on the Web

in the Big Data Era - 10th International Summer School 2014, Athens, Greece, Sept.

8-13, 2014. Proc. (LNCS, Vol. 8714). Springer, 100-140.

Denny Vrandecic and Markus Krétzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78-85.

Shujun Wang, Jie Jiao, Yuhan Li, Xiaowang Zhang, and Zhiyong Feng. 2020.

Answering Questions over RDF by Neural Machine Translating. In Proc. of the

ISWC 2020 Demos and Industry Tracks: From Novel Ideas to Industrial Practice,

Globally online, Nov. 1-6, 2020 (UTC) (CEUR, Vol. 2721). CEUR-WS.org, 189-194.

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph. 2021. Neural machine

translating from natural language to SPARQL. Future Gener. Comput. Syst. 117

(2021), 510-519.

[12

[13

[14

[15

[16

[17

Received 3 February 2023

https://templet.dcc.uchile.cl/
https://github.com/franpss/qa-autocomplete
https://doi.org/10.1109/ICSC50631.2021.00041
https://doi.org/10.1109/ICSC50631.2021.00041
https://arxiv.org/abs/1506.02075
https://arxiv.org/abs/1907.09361
https://doi.org/10.1007/s10115-017-1100-y
http://www.w3.org/TR/sparql11-query/

	Abstract
	1 Introduction
	2 Related Works
	3 Generating Templates from QAWiki
	4 Templet Front-End
	5 Evaluation
	6 Conclusions
	Acknowledgments
	References

