
SPORTAL: Profiling the Content of Public SPARQL Endpoints

Ali Hasnain† Qaiser Mehmood† Syeda Sana e Zainab† Aidan Hogan‡

†INSIGHT Centre for Data Analytics, ‡Center for Semantic Web Research,
National University of Ireland, Galway Department of Computer Science,

University of Chile

Abstract

Access to hundreds of knowledge-bases has been made available on the Web through public
SPARQL endpoints. Unfortunately, few endpoints publish descriptions of their content (e.g., using
VoID). It is thus unclear how agents can learn about the content of a given SPARQL endpoint or,
relatedly, find SPARQL endpoints with content relevant to their needs. In this paper, we investigate
the feasibility of a system that gathers information about public SPARQL endpoints by querying
them directly about their own content. With the advent of SPARQL 1.1 and features such as
aggregates, it is now possible to specify queries whose results would form a detailed profile of the
content of the endpoint, comparable with a large subset of VoID. In theory it would thus be feasible
to build a rich centralised catalogue describing the content indexed by individual endpoints by issuing
them SPARQL (1.1) queries; this catalogue could then be searched and queried by agents looking
for endpoints with content they are interested in. In practice, however, the coverage of the catalogue
is bounded by the limitations of public endpoints themselves: some may not support SPARQL 1.1,
some may return partial responses, some may throw exceptions for expensive aggregate queries, etc.
Our goal in this paper is thus twofold: (i) using VoID as a bar, to empirically investigate the extent to
which public endpoints can describe their own content, and (ii) to build and analyse the capabilities
of a best-effort online catalogue of current endpoints based on the (partial) results collected.

1 Introduction

Linked Data aims at making data available on the Web in an interoperable format so that agents can
discover, access, combine and consume content from different sources with higher levels of automation
than would otherwise be possible [22]. The envisaged result is a “Web of Data”: a Web of structured data
with rich semantic links where agents can query in a unified manner – across sources – using standard
languages and protocols. Over the past few years, hundreds of knowledge-bases with billions of facts
have been published according to the Semantic Web standards (using RDF as a data model and RDFS
and OWL to provide explicit semantics) following the Linked Data principles.

As a convenience for consumer agents, Linked Data publishers often provide a SPARQL endpoint
for querying their local content [25]. SPARQL is a declarative query language for RDF in which graph
pattern matching, disjunctive unions, optional clauses, dataset construction, solution modifiers, etc., can
be used to query RDF knowledge-bases; the recent SPARQL 1.1 release adds features such as aggregates,
property paths, sub-queries, federation, and so on [19]. Hundreds of public endpoints have been published
in the past few years for knowledge-bases of various sizes and topics [25, 10]. Using these endpoints,
clients can receive direct answers to complex queries using a single request to the server.

However, it is still unclear how clients (be they human users or software agents) should find endpoints
relevant for their needs in the first place [36, 10]. A client may have a variety of needs when looking for
an endpoint, where they may, for example, seek endpoints with data:

1. about a given resource, e.g., michael jackson;

2. about instances of a particular type of class, e.g., proteins;

3. about a certain type of relationship between resources, e.g., directs-movie;

1

4. about certain types of values associated with resources, e.g., rating;

5. about resources within a given context or with specific values, for example, crimes with location
U.K. in year 1967 or rat genes and disease strains;

6. a combination of one or more of the above.

Likewise a client may vary in how they are best able to specify these needs: some clients may only have
keywords; others may know the specific IRI(s) of the resource, class or property they are interested in;
some may be able to specify concrete queries or sub-queries that they wish to answer.

We argue that a service offering agents the ability to find relevant public endpoints on the Web
would serve as an important part of the SPARQL querying infrastructure, enabling ad-hoc discovery of
datasets over the Web. However, realising such a service over the current SPARQL infrastructure on the
Web is challenging. Looking at the literature (in particular, works on the related problem of federated
querying [43, 20, 2, 39]), we can find two high-level approaches that have been investigated thus far:

Runtime queries: The first option is to take an agent’s request and query the endpoints directly at
runtime to determine if they have relevant metadata or not [43]. For example, if the agent were
interested in instances of mo:MusicalWork,1 one could issue a list of endpoints the following query:� �

ASK WHERE { ?s a mo:MusicalWork }� �
Any endpoint returning true for this query would contain information relevant to the original
agent. Likewise, more complex queries could be used depending on the user’s need. For example,
if a user were interested in endpoints with more than 100 such instances, the service could issue:� �

SELECT (COUNT(DISTINCT ?s) AS ?c) WHERE { ?s a mo:MusicalWork }� �
Any endpoint returning a result greater than 100 would be relevant.

Published content descriptions: The second option is to rely on a static description of the content of
each endpoint [43, 20, 2, 39]. These works either assume that a description is available in a popular
format, such as the Vocabulary of Interlinked Datasets (VoID [4]), or a custom format [20, 2, 39].
For example, the VoID vocabulary allows for defining class partitions that not only state which
classes are in a dataset, but how many instances it has, which properties appear, and so forth [4].
These descriptions can then be used directly to find endpoints with relevant content.

However, these approaches are themselves problematic.
With respect to the first approach, each user request would require a query to be sent to several

hundred public endpoints, which would incur very slow response times and could flood public services with
too many requests. Likewise, users would need to know the IRIs of the resources, classes and/or properties
they are interested in where supporting keyword search would be cumbersome to support: (i) although
SPARQL does support functions such as REGEX that could be used to find relevant terms in literals,
these functions are often executed as post-filtering operations, incurring unpredictable performance; (ii)
although many SPARQL engines do build and maintain inverted indexes for efficient full-text search with
keywords, this support is non-standard, different engines support full-text search in different manners,
and determining the engine powering a SPARQL endpoint is non-trivial [10].

With respect to the second approach, Buil-Aranda et al. [10] previously observed that only one third
of public SPARQL endpoints give static descriptions of their content in a standard location using suitable
vocabularies such as VoID, and even where they are provided, it is unclear what level of detail these
descriptions contain or indeed how accurate or up-to-date these descriptions are. Over the past several
years, at least 159 distinct websites have begun hosting SPARQL endpoints [10]. Putting the burden
on publishers to provide static descriptions of their endpoints’ content or to otherwise change how they
host data would incur a prohibitive technical and social cost.

For these reasons, in this paper we propose and explore the feasibility of a third approach:

1Note that all prefixes used in this paper are listed in Table 12 of the Appendix.

2

Computing content descriptions: Rather than relying on publishers to compute and keep content
descriptions up to date, we propose to compute such descriptions directly from the endpoints
themselves. In particular, we propose to design a set of queries that can be issued to endpoints to
learn about their content, where the results of these queries can then be used to build a catalogue
that enables clients to find endpoints with relevant content.

This approach offers a number of useful trade-offs when compared with the previous two approaches
discussed earlier.

Comparing the use of computed content descriptions with runtime queries, in the former case, the
client will query a centrally indexed catalogue, which incurs a lower cost, both for the client in terms
of response time, and also for the remote SPARQL infrastructure in terms of the number of requests
generated. However, the client will be restricted to finding endpoints using the metadata collected in the
catalogue. For this reason, it is important for the catalogue to capture general descriptions of content.

When compared with using published content descriptions, we do not need to assume that such
descriptions are provided by the publishers of SPARQL endpoints independently of the endpoint itself.
Also, by computing the content descriptions, we ensure that the endpoint is still available (since it needs
to answer the queries we send it), that the description is at least as recent as the last time the descriptions
were computed, and that the statistics have a simple SPARQL query that acts as provenance (rather
than using descriptions provided by the publishers themselves that could be produced by tools with,
e.g., different interpretations of statistics or that may include manual approximations). However, it is
not clear if public endpoints would be able to support the type of complex SPARQL query required to
compute detailed content descriptions, and indeed certain types of descriptors (e.g., licence) may not be
automatically computed from the endpoint but rather require the perspective of the publisher.

In this paper, we explore the feasibility of computing content descriptions directly from SPARQL
endpoints. More concretely, we propose Sportal (SPARQL portal): a centralised catalogue indexing
content descriptions computed from individual SPARQL endpoints. The goal of Sportal is to help both
human and software agents find public SPARQL endpoints relevant for their needs. The system makes
minimal assumptions about how data are hosted: Sportal relies only on SPARQL queries to gather
information about the content of each endpoint and hence only assumes a working SPARQL interface
rather than requiring the publishers hosting endpoints to provide additional descriptions of the datasets.
Rather than send a query to each public endpoint at runtime, we issue each endpoint queries offline to
gather metadata about its content, which are later used to find relevant endpoints. Taking a simple
example, instead of querying each endpoint every time an agent is looking for a given class, we can
occasionally query each endpoint (on a fortnightly basis) for an up-to-date list of their classes and use
that list to find relevant endpoints for the agent at runtime.

One of the main design questions for Sportal then is: what content descriptions should such a
system try to compute from endpoints? Ideally the content descriptions should be as general as possible,
supporting a variety of different types of clients and searches. With respect to the information collected,
SPARQL is a powerful query language that can be used to learn about the underlying knowledge-base
of the endpoint. With the advent of novel features in SPARQL 1.1 like aggregates, it is now possible
to formulate queries that ask, e.g., how many triples the knowledge-base contains, which classes or
properties are used, how many unique instances of each class appears, which properties are used most
frequently with instances of which classes, and so on. In this sense, we argue that – at least in theory –
SPARQL endpoints can be considered self-descriptive: they can describe their own content.

On the other hand, Sportal is limited in what it can collect by practical thresholds on the amount
of data that a SPARQL endpoint will return. Buil-Aranda et al. [10] found that many endpoints return
a maximum of 10,000 results: given that many endpoints contain millions of resources and text literals,
this rules out, for example, building a complete inverted index over the content of an individual endpoint,
or indexing all resources that an endpoint mentions. In any case, the goal of Sportal is to compute
concise content descriptions rather than mirroring remote endpoint content (which would be prohibitively
costly for both Sportal and the remote endpoints, particularly to keep up-to-date). Thus, we focus on
computing concise, schema-level descriptions of endpoints. Using such descriptions, we can directly find
relevant endpoints given queries of type 2, 3, 4 mentioned earlier, and can indirectly help with other
forms of queries (e.g., to find endpoints that contain instances of gene, though they may not necessary
be from a rat). In particular, we focus on computing extended Vocabulary of Interlinked Datasets (VoID)

3

descriptions from endpoints: VoID has become the de-facto standard for describing datasets in RDF [4],
and is also used in federated scenarios to find relevant endpoints [39, 43, 3, 2, 6].

Sportal is further limited by the inability of some endpoints to return answers to complex queries.
Buil-Aranda et al. [10] previously reported that endpoints may exhibit performance and reliability issues,
may return partial results, etc. Some endpoints may not support SPARQL 1.1, some may be hosted
on underpowered machines, others may index very large and/or diverse datasets over which complex
aggregates cannot be successfully executed, and so forth. This again creates a practical limit with
respect to how detailed a content description Sportal can generate for certain endpoints. For example,
in later results we will show that while 94% of operational public endpoints respond successfully when
asked for a list of all classes in their dataset, only 40% respond successfully when additionally asked
how many instances those classes have. Thus, the Sportal catalogue would include metadata about
the classes that appear in 93% of the catalogued endpoints, but only in 40% cases would the catalogue
have information about how many instances appear in those classes.

Rather than limiting ourselves to building uniform descriptions of each endpoint based on information
that can be computed from, say, >90% of endpoints, Sportal also considers more complex queries in
its scope: while most endpoints cannot return responses to such queries, as we will show, a non-trivial
percentage of endpoints do respond. In the interest of collecting as much data as possible from these
latter endpoints, we include these more complex queries. Likewise we would hope that as SPARQL
implementations mature, the percentage of endpoints responding to more complex queries may grow over
time. As a result, the descriptive metadata available for an individual endpoint may differ from others
depending on its ability to answer increasingly complex queries over its dataset. A core contribution of
this paper is thus to evaluate the ability of public SPARQL endpoints to answer increasingly complex
self-descriptive queries, which reflects the coverage of high-level metadata available to the Sportal
catalogue (and similar agents) using only the SPARQL interface.

More specifically, our working hypothesis in this paper is that – despite problems with endpoint
reliability and performance – by computing content descriptions using self-descriptive queries issued
directly to endpoints, we can create a catalogue with (i) broader coverage and (ii) more up-to-date
information than existing catalogues of SPARQL endpoints that rely on currently-available content
descriptions provided by the publishers themselves. Towards investigating the validity of this hypothesis,
this paper is structured as follows:

• We begin in Section 2 with some background on related areas: Linked Data access methods, pro-
posals for describing RDF datasets, proposals for schemes to help find relevant SPARQL endpoints,
as well as discussion on how the problem could be viewed from the perspective of Linked Data as
a Distributed System.

• In Section 3, we look at how the content of endpoints can be described in a general-purpose,
automated manner. In order to extract a description of the content of each endpoint, we propose
to use a set of 29 self-descriptive SPARQL (1.1) queries that capture a large “computable” subset
of a VoID description [4] as well as some additional features.2

• In Section 4, we first investigate, in a controlled environment, how well current SPARQL 1.1 engines
are able to process these self-describing queries, some of which involve aggregation across an entire
dataset and thus may require a prohibitive amount of processing, especially for large datasets. We
run experiments over four datasets of increasing size and complexity using four SPARQL engines –
4store [18], Jena/Fuseki3, Sesame [9] and Virtuoso [14] – to see how well our self-descriptive queries
perform. These engines are mostly commonly used to power public SPARQL endpoints [10].

• With an idea of how the queries perform in a local environment for a variety of datasets and en-
gines, in Section 5, we investigate how effectively public SPARQL endpoints process these queries.
We take a list of 618 public endpoints and investigate the ratio that can answer each of the

2Certain aspects of VoID may not be computable directly from a dataset, such as the author(s) of a dataset, how it is
licensed, OpenSearch descriptions, etc. Likewise we do not include subjective criteria in the computable fragment – such
as the categories of the dataset – even if candidates could be computed automatically [15].

3http://jena.apache.org/documentation/fuseki2/; l.a. 2015/12/10

4

http://jena.apache.org/documentation/fuseki2/

self-descriptive queries and characterise the typical performance we can expect in a realistic, un-
controlled environment. Our results show that, depending on the query, the ratio of operational
endpoints4 returning non-empty (but possibly partial) responses varies from 25–94%.

• In Section 6, we introduce the Sportal catalogue based on the results collected from the remote
endpoints. We describe the manner in which it can help both human and software agents to find
public endpoints on the Web that may be relevant for their needs. Based on the results of the
previous questions, we discussed the (in)completeness of the catalogue and both the capabilities and
limitations of the system. We also provide a high-level comparison of the Sportal catalogue with
two catalogues based on publisher-provided content descriptions: VoID Store and DataHub.

• We conclude in Section 7 by recapitulating the main results of the paper and lessons learnt with
respect to the goal of building a central catalogue of public SPARQL endpoints.

2 Background

Before we continue to the core of the paper, we provide some brief background on (1) methods for
accessing Linked Data, (2) the problem of peer discovery in the area of Distributed Systems, (3) works
on finding relevant SPARQL endpoints, and (4) techniques for describing/summarising RDF datasets.

Linked Data access methods

Traditionally there have been three methods provided for consumer agents to access content from
knowledge-bases published as Linked Data: dereferencing, where IRIs of interest are looked up via
HTTP; dumps, where the entire content of a dataset is made available for download; and SPARQL end-
points, where a query interface is provided over the local content. A more recent proposal – Linked
Data Fragments [46] – has recently begun to gain attention.

Both dereferencing and dumps are lightweight methods in-tune with current practices on the Web;
however, they can be inefficient for agents to use. Consider an agent wishing to retrieve the populations of
Asian capitals from DBpedia. An agent has no direct way of finding the correct IRIs to dereference; even
if they did, DBpedia specifies a Crawl-delay of 10 seconds: assuming that the DBpedia IRIs of 49 Asian
capitals needed dereferencing, a polite agent would require 8 minutes to retrieve the respective documents
and would ultimately use one triple out of potentially hundreds of thousands in each document. Using a
dump would entail downloading an entire dataset to get at 49 triples; hosting a local dump mirror would
require constant refreshing.

Hence publishers provide SPARQL endpoints as a convenient alternative to dereferencing or dumps.
To get the populations of Asian capitals, an agent could run the following query against the DBpedia
SPARQL endpoint5:� �

SELECT ?pop ?city WHERE { ?city dct:subject dbc:Capitals in Asia ; dbo:populationTotal ?pop . }� �
All going well, the query will return populations in less than a second. Likewise only the data that
the client is interested in will be transferred. However, SPARQL endpoints push the burden from data
consumers to producers: hosting such a public query service is expensive and as a result, endpoints
may not be able to answer all queries for all consumer agents [10]. Despite problems with reliability,
SPARQL endpoints still offer an appealing method for consumer agents to interact with remote Linked
Data knowledge-bases where endpoints such as DBpedia serve millions of queries for clients [16].

As an alternative to SPARQL endpoints, Verborgh et al. [46] propose methods for providing and
organising multiple access methods to a Linked Dataset, including a lightweight “triple pattern fragment”,
which allows clients to request all triples matching a single pattern, the goal of which is to allow publishers
to host highly reliable but greatly simplified query services, thus trying to strike a better balance between
the costs on the client and server side. Although their Linked Data Fragments (LDF) proposal offers a
valuable compromise between client and server costs, being a recent proposal, SPARQL endpoints still
greatly outnumber the number of LDF servers on the Web.

4We say that an endpoint is operational if it can be accessed over HTTP through the SPARQL protocol and will return
a valid non-empty response to the following query: SELECT * WHERE ?s ?p ?o LIMIT 1

5http://dbpedia.org/sparql; l.a. 2015/12/10 (42 populations are returned at the time of writing).

5

http://dbpedia.org/sparql

SPARQL Endpoints as a Distributed System

Viewed from the perspective of Distributed Computing, each SPARQL endpoint on the Web involves a
client–server architecture, where numerous clients use the SPARQL protocol to interface with a single
external server.6 However, when hundreds of public SPARQL endpoints are viewed collectively, they
can be seen as forming a decentralised peer-to-peer (P2P) system. In particular, with the advent of
SPARQL 1.1 Federation [37], endpoints can query each other and thus may perform computation on
behalf of other peers.

In this light, the goal of finding relevant SPARQL endpoints relates to the core problem of peer
discovery in the P2P area, wherein a peer wishes to find another peer with a particular piece of data.
To make this task more efficient, structured P2P systems impose an overall organisation on the network
overlay to ensure rapid peer discovery; the most common structure is a Distributed Hash Table (DHT),
which is effectively a distributed map where keys are hashed to determine on which peer(s) a given set of
key–value pairs should be stored [42, 48, 40, 44]. However, all such structured schemes assume that peers
in the network can be assigned data, which is not true of SPARQL endpoints where peers themselves
decide which datasets they wish to index.

As such, public SPARQL endpoints collectively form an unstructured P2P system, where, since there
is no correlation imposed between a peer and the data it indexes, peer discovery would necessarily
involve one of two options: a separate search index that records the content at each peer (e.g., trackers
in BitTorrent [38]), or blindly flooding the network with queries looking for the desired data from peers
in a “brute force” manner (e.g., Gnutella [41]).

Rather than requiring a complete global structure or accepting zero structure, other proposals aim
to strike a balance by imposing a limited form of structure over nodes. For example, routing indices [12]
allow nodes to index whatever data they wish, but require that each peer must additionally store pointers
to a neighbouring peer that is closer to the desired data; this avoids blind flooding of queries during peer
discovery, instead allowing peers to be routed to relevant peer(s). Likewise, routing indexes avoid the
need for a central index of peer content.

However, our goal in this paper is to enable peer discovery of SPARQL endpoints without changing
the current infrastructure; we feel that it is important to explore options over the current infrastructure
first before proposing that hundreds of stakeholders change how they host their data. For example, we
do not presume that publishers will agree to add and maintain routing indexes towards the endpoints
of external publishers. Hence we assume that no structure is imposed on the peers, but rather that
each SPARQL endpoint indexes its own data. Thus the scenario is effectively unstructured: we have no
guarantees about which data may appear at which endpoint/peer. Our hypothesis instead is that we
can use the SPARQL query interface to learn about the content at each peer.

Describing/Summarising RDF datasets

With respect to building a central search service for endpoints based on their content, it would seem
infeasible to index all of the data from the endpoint, hence some form of summary or schema overview
must be indexed. A variety of works have proposed methods to describe and/or summarise RDF datasets.

In terms of describing metadata about RDF datasets, Cyganiak et al. [13] propose Semantic Sitemaps
to mark the locations of different Linked Data access points; however information captured is limited to
broad concepts such as change frequency. Alexander et al. [4] later proposed VoID for describing RDF
datasets and the links between them. As we will see, the vocabulary provides terms for describing high-
level statistics about a dataset, as well as about the instances of specific classes and the usage of specific
properties. A number of works have proposed extensions to the VoID vocabulary. Mountantonakis et
al. [34] propose to extend VoID with metrics about the connectivity of pairs of data sources to capture,
for example, the number of common RDF terms used in both sources, the increase in average node degree
with both sources are combined, etc. Omitola et al. [35] propose to extend VoID to allow publishers to
describe in more depth the provenance of their dataset.

With respect to computing dataset descriptions, or profiling datasets, Bohm et al. [8] demonstrated
that computing a VoID description for large datasets is feasible using MapReduce techniques. As part of
the LOD Laundromat service – which aims to clean up and republish existing datasets in a more uniform

6The single server itself of course may be a distributed system, involving multiple replicated or clustered machines [18, 21];
however, this is all transparent from the perspective of the client, who sees one server.

6

manner – Beek et al. [7] compute a VoID description for each dataset indexed. More recently, Fetahu
et al. [15] propose extracting topics from a dataset based on a combination of information retrieval
techniques such as PageRank, HITS and Named Entity Recognition applied offline over the dataset.
Abejan et al. [1] propose ProLOD++: a system to profile Linked Datasets that applies clustering tech-
niques, statistical analysis, and association rules to find semantically related groups of entities, statistical
distributions, properties that together uniquely identify resources, as well as suggested changes to the
dataset/ontology. Mihindukulasooriya et al. [33] propose Loupe: a system that extracts a schema-level
summary of a dataset similar to that captured by VoID (e.g., number of triples, number of instances per
class, etc.), with additional information about namespaces, ontological definitions, etc.

Closer to our own contribution, various works have proposed using SPARQL to extract high-level
information about an RDF dataset. Auer et al. [5] propose LODstats, which applies analytics over a
stream of RDF data but which uses SPARQL filters to (reject)/select (ir)relevant triples; use of SPARQL
is limited to filters. Langegger & Wöß propose RDFStats [28], which uses a pipeline of SPARQL (1.0)
queries to generate a histogram on a per-class basis, representing the predicates and types of values
associated with its instances. Holst & Höfig [23] propose the use of SPARQL 1.1 queries to discover
specific aspects of an RDF dataset, but the authors do not consider VoID and only run local experiments
over three datasets. Mountantonakis et al. [34] propose a set of SPARQL 1.1 queries that can compute the
connectivity metrics with which they extend VoID. Mäkelä [31] propose Aether: a system for extracting
extended VoID descriptions from a SPARQL 1.1 compliant endpoint; this work is perhaps most similar
in spirit to ours, however, the focus is more on getting an overview of a known endpoint rather than
building a catalogue that can be used by clients to find endpoints of interest.

The SPARQL 1.1 Service Description (SD) [47] vocabulary was recently recommended by the W3C;
however, unlike previously discussed works, which focus on describing the content of datasets, SD de-
scribes technical aspects of an endpoint, such as features supported, dataset configurations, etc.

Other works have focused on summarising the content of RDF datasets (rather than describing them
using a high-level RDF description). Umbrich et al. [45] propose to use an approximate, hash-based
indexing structure, called a QTree, to aid in source selection; the QTree allows for determining which
sources are likely to contain matches for a given RDF triple pattern but at a fraction of the size of
the original dataset. Khatchadourian & Consens [26] propose creating bisimulation labels that capture
connectivity in an RDF graph on the level of the namespaces of the instance URIs and the schema used.
Campinas et al. [11] propose using existing graph summary algorithms to summarise RDF graphs, where
nodes that are equivalent per some relation – e.g., having the same types, or the same attributes – are
collapsed into a single node to create a smaller summary graph.

Discovering SPARQL endpoints

As previously discussed in the introduction, there are two high-level options for discovering SPARQL
endpoints with relevant data: (1) flood the endpoints with queries, or (2) build a central search index.
For example, federated SPARQL engines employ one or both of these strategies [39, 43, 3, 2, 6]. Our goal
is to build a central catalogue based on data collected from endpoints through their SPARQL interfaces.

Paulheim & Hertling [36] looked at how to find a SPARQL endpoint containing content about a given
Linked Data URI: using VoID descriptions and the DataHub catalogue, the authors could find suitable
endpoints for about 15% of the sample of ten thousand URIs considered. Mehdi et al. [32] looked at
the problem of discovering endpoints that may be relevant to a set of domain-specific keywords: their
approach involved generating a list of RDF literals from the keywords and flooding queries against
endpoints to see if they contained, e.g., case or language-tag variations of the literals.

Buil-Aranda et al. [10] propose SPARQLES as a catalogue of SPARQL endpoints, but focus on
performance and stability metrics rather than cataloguing content; they do however remark that they
could only find static descriptions for the content of about one third of the public endpoints surveyed,
making endpoint discovery difficult. Likewise, the analysis by Lorey [30] of public endpoints focused on
characterising the performance offered by these services rather than on the problem of discovery.

There are a variety of locations online where lists of public endpoints can be found and searched
over. For example, DataHub7 provides a list of hundreds of Linked Datasets, which can be filtered to
find those that offer SPARQL endpoint locations. One can, for example, search for datasets relating to

7http://datahub.io/, l.a. 2015/12/10.

7

http://datahub.io/

“uk crime” and filter to only show those with SPARQL endpoints. However, the search functionality
provided is limited in most cases to keyword search over the dataset title, or to browsing datasets with
a given tag, etc. Still, the service often provides links to VoID files that could be used to catalogue the
content of endpoints. Unlike Sportal however, these VoID files are provided by publishers rather than
being computed from the endpoints. Hence we will later compare our catalogue with that formed by
collecting the VoID files that DataHub links to for each dataset.

As part of the RKBexplorer infrastructure [17], the VoID Store allows for performing searches over
VoID files submitted to the system.8 A service is also provided to find endpoints that index content
about a given resource (using the REGEX patterns sometimes provided in VoID). This catalogue could
thus be used by clients to find relevant SPARQL endpoints. Currently the store contains information
related to 118 endpoints. Like DataHub – but unlike Sportal – the VoID files indexed by VoID
Store are again computed and uploaded by publishers.

Novelty

We focus on the problem of helping clients find relevant SPARQL endpoints. To the best of our knowl-
edge, there are two online services that clients could use to try to find SPARQL endpoints based on their
content: DataHub and/or VoID Store. However, both of these services rely on static content descrip-
tions provided by publishers themselves. As noted by Buil-Aranda et al. [10], many of the endpoints
listed in the DataHub have been offline for years; also, of the endpoints surveyed, VoID descriptions
are only available in the DataHub for 33.3% and in the VoID Store for 22.4%. We instead propose
to compute extended VoID descriptions for public endpoints directly through their SPARQL interface.
We provide a high-level comparison between Sportal, DataHub and VoID Store in Section 6.

3 Self-Descriptive Queries

With respect to describing the content of an endpoint, in this section, we list the set of SPARQL 1.1
queries that we use to compute a VoID-like description from the content indexed by an endpoint.

Functionality

First we wish to filter unavailable endpoints and to determine those that (partially) support SPARQL 1.1.
We consider an endpoint available if it is accessible through the HTTP SPARQL protocol, it responds
to a SPARQL-compliant query, and it returns a response in an appropriate SPARQL format; for this,
we use query QA1 (see Table 1), which should be trivial for an endpoint to compute, returning a single
binding for any triple. We consider an endpoint SPARQL 1.1 aware if it likewise responds to a query
valid only in SPARQL 1.1; for this, we use query QA2 (see Table 1), which tests two features unique to
SPARQL 1.1: sub-queries and the count aggregate function.9

Table 1: Queries for basic functionality

№ Query

QA1 SELECT * WHERE { ?s ?p ?o } LIMIT 1

QA2 SELECT (COUNT(*) as ?c) WHERE { SELECT * WHERE { ?s ?p ?o } LIMIT 1 }

Dataset-level statistics

Second we list a set of queries to capture high-level “dataset-level” statistics that form a core part of
VoID. We issue five queries, as listed in Table 2, to ascertain the number of triples (QB1), and the
number of distinct classes (QB2), properties (QB3), subjects (QB4) and objects (QB5). These queries
require support for SPARQL 1.1 COUNT and sub-query features (as tested in QA2). The <D> term refers
to an IRI constructed from the SPARQL endpoint’s URL to indicate the dataset it indexes.

8http://void.rkbexplorer.com/; l.a. 2015/12/10
9This does not imply that the endpoint is fully compliant with SPARQL 1.1; only that it supports a subset of features.

8

http://void.rkbexplorer.com/

Table 2: Queries for dataset-level VoID statistics

№ Query

QB1 CONSTRUCT { <D> v:triples ?x }

WHERE { SELECT (COUNT(*) AS ?x) WHERE { ?s ?p ?o } }

QB2 CONSTRUCT { <D> v:classes ?x }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE { ?s a ?o } }

QB3 CONSTRUCT { <D> v:properties ?x }

WHERE { SELECT (COUNT(DISTINCT ?p) AS ?x) WHERE { ?s ?p ?o } }

QB4 CONSTRUCT { <D> v:distinctSubjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) WHERE { ?s ?p ?o } }

QB5 CONSTRUCT { <D> v:distinctObjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE { ?s ?p ?o } }

Once these statistics are catalogued for public SPARQL endpoints, agents can use them to find
endpoints indexing datasets that fall within a given range of triples in terms of overall size, or, for example,
to find the endpoints with the largest datasets. Counts may be particularly useful – in combination with
later categories – to order the endpoints; for example, to find the endpoints with a given class (using
data from the next category) and order them by the total number of triples they index.

Class-based statistics

Third we ascertain similar statistics about the instances of each class following the notion of class
partitions in VoID: a subset of the data considering only triples where instances of that class are in
the subject position. Table 3 lists the six queries we use. The first query (QC1) merely lists all class
partitions. The other five queries (QC2–6) count the triples and distinct classes, predicates, subjects and
objects for each class partition; e.g., QC2 retrieves the number of triples where instances of that class
are in the subject position. Queries QC2–6 introduce COUNT, sub-queries and also GROUP BY features from
SPARQL 1.1.

Table 3: Queries for statistics about classes

№ Query

QC1 CONSTRUCT { <D> v:classPartition [v:class ?c] } WHERE { ?s a ?c }

QC2 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:triples ?x] }

WHERE { SELECT (COUNT(?p) AS ?x) ?c WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c }

QC3 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:classes ?x] }

WHERE { SELECT (COUNT(DISTINCT ?d) AS ?x) ?c WHERE { ?s a ?c , ?d } GROUP BY ?c }

QC4 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:properties ?x] }

WHERE { SELECT (COUNT(DISTINCT ?p) AS ?x) ?c WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c }

QC5 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:distinctSubjects ?x] }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) ?c WHERE { ?s a ?c } GROUP BY ?c }

QC6 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:distinctObjects ?x] }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) ?c WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c }

Once catalogued, agents can use statistics describing class partitions of the datasets to find endpoints
mentioning a given class, where they can additionally (for example) sort results in descending order
according to the number of unique instances of that class, or triples used to define such instances, and
so forth. Hence the counts computed by QC2–6 help agents to distinguish endpoints that may only have
one or two instances of a class to those with thousands or millions. Likewise criteria can be combined
arbitrarily for multiple classes, or with the overall statistics computed previously.

9

Property-based statistics

Fourth we look at property partitions in the dataset, where a property partition refers to the set of triples
with that property term in the predicate position. Queries are listed in Table 4. As before, QD1 lists
the property partitions. QD2–4 count the number of triples, distinct subjects and distinct objects. We
do not count classes (which would be 0 for all properties except rdf:type) or properties (which would
always be 1).

Table 4: Queries for statistics about properties

№ Query

QD1 CONSTRUCT { <D> v:propertyPartition [v:property ?p] } WHERE { ?s ?p ?o }

QD2 CONSTRUCT { <D> v:propertyPartition [v:property ?p ; v:triples ?x] }

WHERE { SELECT (COUNT(?o) AS ?x) ?p WHERE { ?s ?p ?o } GROUP BY ?p }

QD3 CONSTRUCT { <D> v:propertyPartition [v:property ?p ; v:distinctSubjects ?x] }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) ?p WHERE { ?s ?p ?o } GROUP BY ?p }

QD4 CONSTRUCT { <D> v:propertyPartition [v:property ?p ; v:distinctObjects ?x] }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) ?p WHERE { ?s ?p ?o } GROUP BY ?p }

Using these statistics about property partitions in the catalogue, agents can, for example, retrieve
a list of public endpoints using a given property ordered by the number of triples using that specific
property. Likewise criteria can be combined arbitrarily for multiple properties, or with the dataset- or
class-level metadata previously collected; for example, an agent may wish to order endpoints by the ratio
of triples using a given property (where the count from QD2 for the property in question can be divided
by the total triple count from QB1), or to find endpoints where all subjects have an rdfs:label value
(where the count computed from QD3 for that property should match the count for QB4).

Nested class–property statistics

Fifth we look at how classes and properties are used together in a dataset, gathering statistics on property
partitions nested within class partitions: these statistics detail how properties are used for instances of
specific classes. Table 5 lists the four queries used. QE1 lists the property partitions nested inside the
class partitions, and QE2–4 count the number of triples using a given predicate for instances of that class,
as well as the number of distinct subjects and objects those triples have. In terms of technical features,
these queries involve GROUP BY over multiple terms. In general, the queries listed in this section are quite
complex where we would expect that many endpoints would struggle to return metadata about their
content at this detailed level of granularity.

Table 5: Queries for nested property/class statistics

№ Query

QE1 CONSTRUCT { <D> v:classPartition [v:class ?c ; v:propertyPartition [v:property ?p]] }

WHERE { ?s a ?c ; ?p ?o }

QE2 CONSTRUCT { <D> v:classPartition [v:class ?c

v:propertyPartition [v:property ?p ; v:triples ?x]] }

WHERE { SELECT (COUNT(?o) AS ?x) ?p WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c ?p }

QE3 CONSTRUCT { <D> v:classPartition [v:class ?c ;

v:propertyPartition [v:distinctSubjects ?x]] }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) ?c ?p WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c ?p }

QE4 CONSTRUCT { <D> v:classPartition [v:class ?c ;

v:propertyPartition [v:distinctObjects ?x ; v:property ?p]] }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) ?c ?p WHERE { ?s a ?c ; ?p ?o } GROUP BY ?c ?p }

An agent could use the resulting metadata to find endpoints describing instances of specific classes
with specific properties, with filtering or sorting criteria based on, e.g., the number of triples. For
example, an agent might be specifically interested in images of people, where they would be looking for

10

the class-partition foaf:Person with the nested property-partition foaf:depicts. Using the previous
statistics, it would have been been possible to find endpoints that have data for the class foaf:Person

and triples with the property foaf:depicts, but not that the images were defined for people. The
counts from QE2–E4 again allow an agent to filter or order endpoints by the amount of relevant data.

Miscellaneous statistics

In our final set of experiments, we look at queries that yield statistics not supported by VoID as listed
in Table 6. In particular, we experiment to see if endpoints can return a subset of statistics from the
VoID Extension Vocabulary10, which include counts of different types of unique RDF terms in different
positions: subjects IRIs (QF1), subject blank nodes (QF2), objects IRIs (QF3), literals (QF4), object
blank nodes (QF5), all blank nodes (QF6), all IRIs (QF7), and all terms (QF8). Inspired by the notion
of “schema maps” as proposed by Kinsella et al. [27], we also count the classes that the subjects and
objects of specific properties are instances of (QF9–10); these are “inverses” of queries (QE3–4).

11

Table 6: Queries for miscellaneous statistics

№ Query

QF1 CONSTRUCT { <D> e:distinctIRIReferenceSubjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) WHERE { ?s ?p ?o FILTER(isIri(?s))} }

QF2 CONSTRUCT { <D> e:distinctBlankNodeSubjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?s) AS ?x) WHERE { ?s ?p ?o FILTER(isBlank(?s))} }

QF3 CONSTRUCT { <D> e:distinctIRIReferenceObjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE { ?s ?p ?o FILTER(isIri(?o))} }

QF4 CONSTRUCT { <D> e:distinctLiterals ?x }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE { ?s ?p ?o FILTER(isLiteral(?o))} }

QF5 CONSTRUCT { <D> e:distinctBlankNodeObjects ?x }

WHERE { SELECT (COUNT(DISTINCT ?o) AS ?x) WHERE { ?s ?p ?o FILTER(isBlank(?o))} }

QF6 CONSTRUCT { <D> e:distinctBlankNodes ?x }

WHERE { SELECT (COUNT(DISTINCT ?b) AS ?x)

WHERE { { ?s ?p ?b } UNION { ?b ?p ?o } FILTER(isBlank(?b)) } }

QF7 CONSTRUCT { <D> e:distinctIRIReferences ?x }

WHERE { SELECT (COUNT(DISTINCT ?u) AS ?x)

WHERE { { ?u ?p ?o } UNION { ?s ?u ?o } UNION { ?s ?p ?u } FILTER(isIri(?u) } }

QF8 CONSTRUCT { <D> e:distinctRDFNodes ?x }

WHERE { SELECT (COUNT(DISTINCT ?n) AS ?x)

WHERE { { ?n ?p ?o } UNION { ?s ?n ?o } UNION { ?s ?p ?n } } }

QF9 CONSTRUCT { <D> v:propertyPartition [v:property ?p ;

s:subjectTypes [s:subjectClass ?sType ; s:distinctMembers ?x]] }

WHERE { SELECT (COUNT(?s) AS ?x) ?p ?sType

WHERE { ?s ?p ?o ; a ?sType . } GROUP BY ?p ?sType }

QF10 CONSTRUCT { <D> v:propertyPartition [v:property ?p ;

s:objectTypes [s:objectClass ?oType ; s:distinctMembers ?x]] }

WHERE { SELECT (COUNT(?o) AS ?x) ?p ?oType

WHERE { ?s ?p ?o . ?o a ?oType . } GROUP BY ?p ?oType }

The resulting data could serve a number of purposes for agents looking for public endpoints. For
example, the agent in question could look for datasets without any blank nodes, or for datasets where
a given number of the objects of a given property are of a certain type. Likewise, the user can combine
these criteria with earlier criteria; for example, to find endpoints with more than ten million triples where
at least 30% of the unique object terms are literals.

10http://ldf.fi/void-ext#; denoted herein as e:.
11We created a novel namespace (s:) available from http://vocab.deri.ie/sad#.

11

http://ldf.fi/void-ext#
http://vocab.deri.ie/sad#

4 Local Experiments

In our first set of experiments, we test whether or not SPARQL implementations can locally answer
the queries we specified in the previous section. These implementations are used to power individual
endpoints and hence we would like to see if running these queries is feasible in a locally controlled
environment before running remote experiments.

Along these lines, given the 29 self-descriptive queries mentioned previously, we test four popular
SPARQL query engines: Virtuoso (07.10.3207), Fuseki (1.0.2), 4store (4s-httpd/v1.1.4) and Sesame
(2.7.12). Given that the cost of the self-descriptive queries listed previously depends directly on the size
and nature of the dataset indexed, for each engine, we perform experiments with respect to the four
real-world datasets listed in Table 7, representing a mix of datasets at a variety of scales and with a
variety of diversity in predicates and classes used. The experiments are run on a server with Ubuntu 14,
a 4x Intel Core i5 CPU (M540@2.53 GHz) processor and 8 GB of RAM. A timeout of 10 minutes was
set for the first result to return. Result-size thresholds were switched off where applicable.

Table 7: High-level statistics for datasets used in local experiments

Triples Subjects Predicates Objects Classes

DrugBank 517,023 19,693 119 276,142 8
Jamendo 1,049,647 335,925 26 440,686 11
Kegg 1,090,830 34,260 21 939,258 4
DBPedia 114,456,676 11,194,893 53,200 27,518,753 447

All of the engines passed the functionality tests. In Table 8, we list the runtimes for all other queries
(spanning Tables 2–6), for the four datasets and the four engines. We manually inspected the results
so as to only include runtimes where the correct response was returned. With respect to the (partially)
failed queries, in the table, we differentiate between:

empty results (—) where zero results are returned, most commonly caused by a 10 minute timeout;

partial results (∼) where the stream of results returned is correct but ends prematurely;

incorrect results (5) where the results returned are false, most commonly caused by counts not con-
sidering all results or by query processor bugs.

In the following, we draw high-level conclusions from these results.

Datasets

We see in Table 8 that while Fuseki, Sesame and Virtuoso successfully run almost all queries for Drug-
Bank, Jamendo and KEGG – datasets around or below a million triples – all engines struggle for the
DBpedia dataset, which is two orders of magnitude larger and contains two orders of magnitude more
classes, predicates, objects and subjects. This is better illustrated by Figure 1, where the difference
between DBpedia and the other datasets is evident in terms of success rate. Only Virtuoso managed
to return correct results for some queries over DBpedia, including counts for triples, classes, properties,
triples per property partition, blank node subjects, blank node objects, blank nodes in any position12

and object IRIs. We posit that with the available memory, queries over the smaller datasets could be
processed largely in-memory whereas queries over DBpedia may have led to a lot of on-disk processing.

Engines

With respect to the success rate of the four implementations, from Table 8 and Figure 1, we can see
that 4store struggled the most with the self-descriptive queries specified, returning correct results only
for counts of classes, properties and blank nodes. Fuseki was the most reliable engine for the smaller
datasets, successfully answering all queries over DrugBank, Jamendo and KEGG, whereas Sesame and
Virtuoso struggled on queries QD1 and QF10. From further investigation, we discovered that for QD1

12In fact, DBpedia contained no blank nodes, nor did any of the other datasets.

12

Table 8: Local query runtimes for self-descriptive queries (times in millisecond; engines are keyed as
4store, Fuseki, Sesame, Virtuoso; ‘—’ indicates empty results, ‘∼’ partial results, ‘5’ incorrect results)

№
DrugBank Jamendo KEGG DBpedia

4 F S V 4 F S V 4 F S V 4 F S V

QB1 5 5,128 6,962 95 5 4,637 6,001 127 5 2,018 3,059 130 — — — 6,175
QB2 27 3,140 658 43 5 8,278 2,258 158 42 2,773 325 55 5 — — 6,260
QB3 29 1,664 7,029 155 34 1,840 6,478 278 35 1,016 3,140 284 — — — 25,130
QB4 5 6,029 7,324 252 5 7,987 6,503 1,493 5 2,455 3,263 498 — — — —
QB5 5 17,141 8,764 1,269 5 4,714 6,824 1,736 5 7,174 3,715 2,523 — — — —

QC1 5 4,201 21,845 3,560 5 16,868 166,727 33,559 5 3,125 19,282 4,453 ∼ — — —
QC2 5 5,342 9,305 374 5 5,336 10,086 291 5 3,097 5,609 360 — — — —
QC3 5 949 758 99 5 2,946 5,153 390 5 801 526 119 — — — —
QC4 5 2,844 9,423 949 5 3,940 10,028 1,135 5 1,990 5,933 1,110 — — — —
QC5 5 227 479 178 5 991 2,952 2,255 5 249 258 226 — — — —
QC6 5 17,612 10,393 2,979 5 5,530 10,339 3,472 5 3,483 6,802 4,301 — — — —

QD1 5 80,119 754,030 — 5 106,486 — — 5 35,902 323,709 — — — — —
QD2 5 13,468 8,787 109 5 7,675 740 90 5 5,022 3,917 111 — — — 41,188
QD3 5 2,718 90,936 1,425 5 3,870 8,322 3,105 5 1,580 4,120 1,764 — — — —
QD4 5 15,504 10,252 1,710 5 4,983 8,355 2,298 5 2,258 4,356 3,298 — — — —

QE1 5 60,310 1,296,659 17,899 5 39,836 2,663,655 34,926 5 17,825 683,787 37,204 — — — —
QE2 5 13,644 9,410 445 5 5,086 12,886 279 5 2,947 6,469 240 — — — —
QE3 5 4,113 10,029 2,815 5 6,246 10,522 3,464 5 3,505 7,021 2,763 — — — —
QE4 5 20,489 10,603 3,415 5 6,449 10,649 3,448 5 3,359 7,756 4,596 — — — —

QF1 5 2,587 9,990 428 5 4,181 9,131 1,943 5 1,375 4,622 822 — — — —
QF2 30 3,066 8,992 52 36 2,407 8,178 42 45 1,410 4,151 54 — — — 378
QF3 5 17,559 11,069 486 5 3,663 9,416 1,467 5 1,711 4,470 1,815 — — — 65,398
QF4 5 15,862 9,580 1,100 5 3,061 9,775 644 5 1,761 4,592 1,160 — — — —
QF5 29 14,686 8,877 122 40 3,678 7,755 162 38 1,652 3,880 168 — — — 16,192
QF6 52 17,208 17,820 130 58 4,914 15,968 173 60 2,049 7,691 204 — — — 16,323
QF7 5 23,360 31,675 1,333 5 11,497 27,428 4,183 5 4,456 13,401 3,131 — — — —
QF8 5 26,517 27,651 1,788 5 10,565 23,549 6,728 5 5,122 11,642 3,615 — — — —
QF9 5 4,725 9,546 414 5 6,746 9,875 315 5 3,210 6,822 271 — — — —
QF10 5 1,272 — 127 5 5,290 — 619 5 1,228 — 149 — — — —

– list all property partitions – the engines were returning two output triples for every triple indexed,
producing a large volume of non-lean data, as opposed to returning two output triples for every unique
property. To get around this, a sub-query specifying DISTINCT on ?p could be used at the cost of
requiring SPARQL 1.1 support. On the other hand, QF10 would seem on face value to be the most
expensive query in our collection, requiring an open join and aggregation step that may naturally fail
even for small-to-medium-sized datasets.

Runtimes

We see quite a large variance in runtimes between the different engines, varying in orders of magnitude.
In order to get a better insight into the differences in performance, in Figure 2, we plot the ratio of all
116 queries (29 queries × 4 datasets) that ran below a certain runtime, where, for example, we can see
that Virtuoso successfully ran 40% of the queries in less than one second and 72% of the queries in less
than ten seconds. The plots end where queries began to fail. Interestingly, although 4store was the most
unreliable engine, it offered the fastest runtimes for the simpler queries it did answer, suggesting some
index may have been used for optimisation purposes. Although Sesame and Fuseki were faster for certain
queries, the trend in Figure 2 suggests that overall, Virtuoso was fastest for most queries. We also see
that many queries continued to stream results well in excess of the one minute connection timeout, with
Sesame having some of the slowest successful query executions (the slowest being 44 minutes).

Errors

Although all engines returned empty results, 4store was the only engine that was found to return partial
or incorrect answers where, for count queries, the engine seemed to return a partial count of what it had

13

Dr
ug

Ba
nk

Ja
me

nd
o

KE
GG

DB
pe
di
a

To
ta
l

0

0.2

0.4

0.6

0.8

1

Dataset

R
at

io
of

q
u
er

ie
s

an
sw

er
ed

4store Fuseki Sesame Virtuoso

Figure 1: Ratio of successful queries per
dataset/engine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.1

1

10

100

1,000

Ratio of queries

W
it

h
in

ru
n
ti

m
e

(s
)

4store Fuseki

Sesame Virtuoso

Figure 2: Ratio of queries executed within given
runtime

found up to a certain point.13 Otherwise, the other engines tended to have fail-stop errors, meaning that
they either returned full correct results or no results at all. With respect to public SPARQL endpoints,
although we would expect partial results due to result-size limits [10], the pattern of errors in Table 8
suggests that if one of the latter three engines successfully returns a count result, then that value is
likely to be correct.

Summary

In general, we see that Fuseki, Sesame and Virtuoso are capable of describing – in considerable detail –
the content of small-to-medium-sized datasets under controlled conditions, returning correct results for
almost all queries over DrugBank, Jamendo and KEGG. These results suggest that when deployed
as public SPARQL endpoints, these implementations could provide a rich catalogue of the content of
such datasets. However, we would not expect to derive as rich or as trustworthy a description from
4store-powered endpoints, nor from larger datasets or datasets with more diverse schema terms.

5 Remote Experiments

We now look at how public SPARQL endpoints themselves perform for the list of self-descriptive queries
we have previously enumerated. Along these lines, we collected a list of 540 SPARQL endpoints registered
in the DataHub in April 2015.14 We likewise collected a list of 137 endpoints from Bio2RDF releases
1–3. In total, we considered 618 unique endpoints (59 endpoints were present in both lists). The results
are based on experiments we performed in April 2015.

Implementations used

With respect to the previous local experiments, we are first interested to see if we can determine which
implementations are used by the in-scope endpoints. As per the observations of Buil-Aranda et al. [10],
although there is no generic exact method of determining the engine powering a SPARQL endpoint, the
HTTP header may contain some clues in the Server field. Hence our first step was to perform a lookup
on the endpoint URLs. In Table 9, we present the response codes of this step, where we see that quite
a large number of endpoints return error codes 4xx, 5xx, or some other exception. This indicates that a
non-trivial fraction of the endpoints from our list are offline; we will return to this issue later.

13Many counts had the value of 1,996 or some other value close to a multiple of a thousand; these results were incorrect
where some of the expected values were in the hundreds of thousands.

14http://datahub.io

14

http://datahub.io

Table 9: HTTP response

Response №

200 (successful) 307
200 (unsuccessful) 43
400 56
404 66
500 4
502 0
503 32
unknown host 51
time out 23
connection refused 18
not responding 7

Table 10: Server Names

Server-field №

Apache 203
Virtuoso 174
nginx 38
Jetty 25
Fuseki 15
GlassFish 3
4s-httpd 2
lighttpd 1
empty 130

With respect to the server names returned by those URLs that returned a HTTP response, Table 10
enumerates the main prefixes that we discovered. Although some of the server names denote generic
HTTP servers – more specifically Apache, nginx, Jetty, GlassFish, Restlet and lighttpd – we also
see some names that indicate SPARQL implementations – namely Virtuoso, Fuseki and 4s-httpd

(4store). Interestingly, we see that two of the engines that performed quite well in our local experiments
– Virtuoso and Fuseki – are quite prevalent amongst SPARQL endpoints.15

Availability and version

Based on the previous experiment, we suspect some of the endpoints in our list may be offline. Hence
we next look at how many endpoints respond to the basic availability query QA1.

Given that we run queries in an uncontrolled environment, we perform multiple runs to help mitigate
temporary errors and remote server loads: the core idea is that if an endpoint fails at a given moment of
time, a catalogue could simply reuse the most recent successful result. Along these lines, we ran three
weekly experiments in the month of April 2015. In total, 307 endpoints (49.7%) responded to QA1 at
least once in the three weeks; we deem these endpoints to be operational and others to be offline. Of
the operational endpoints, 7 (1.1%) responded successfully exactly once to QA1, 28 (4.5%) responded
successfully exactly twice, and 272 (44.0%) responded successfully thrice. In the most recent run, 298
endpoints responded to QA1. Of these, 168 (56.4%) also responded with a single result for QA2, indicating
some support for SPARQL 1.1 in about half of the operational endpoints.

Moving forward, to mitigate the issue of temporary errors, for each endpoint, we consider the most
recent non-empty results returned for each endpoint and each query over the three runs.

Success rates

We first focus on the overall success rates for each query, looking at the ratio of the 307 endpoints that
return non-empty results. The results are illustrated in Figure 3, where we see success rates varying from
25% for QE3 on the lower end, to 94% for QC1 on the higher end. The three queries with the highest
success rates require only SPARQL 1.0 features to run: list all class partitions (QC1), all property
partitions (QD1), and all nested partitions (QE1). Hence we see that – as expected given that only 49%
could respond to the SPARQL 1.1 test query QA2 – more endpoints can answer queries not requiring
novel SPARQL 1.1 features such as counts or sub-queries. The query with the highest success rate that
involved SPARQL 1.1 features was QB1, where 51% of endpoints responded with a count of triples. In
general, queries deriving counts within partitions had the lowest success rates.

Result sizes

Next we focus on the size of results returned for each query. To illustrate this, in Figure 4 we show result
sizes in log scale for individual queries at various percentiles considering all endpoints that returned
a non-empty result. As expected, queries that return a single count triple return one result across all

15These results correspond quite closely with those of Buil-Aranda et al. [10]. We believe that some Sesame endpoints
may be within the Apache category since the default Sesame header is Apache-Coyote/1.1.

15

B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 C6 D1 D2 D3 D4 E1 E2 E3 E4 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

0

0.2

0.4

0.6

0.8

1

Query

R
a
ti
o
o
f
en

d
p
o
in
ts

an
sw

er
in
g

Figure 3: Ratio of endpoints returning non-empty results per query

B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 C6 D1 D2 D3 D4 E1 E2 E3 E4 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

100

101

102

103

104

105

Query

S
iz
e
of

re
su
lt
s

max

75th

50th

25th

Figure 4: Sizes of results for different queries taking 25th, 50th (median), 75th and 100th (max) percentiles,
inclusive, across all endpoints returning non-empty results

percentiles. For other queries, the result sizes extended into the tens of thousands. One may note that the
higher percentiles are quite compressed for certain queries, indicating the presence of result thresholds.
For example, for QC1, a common result-size was precisely 40,000, which would appear to be the effect
of a result-size threshold. Hence, unlike the local experiments where result thresholds could be switched
off, we see that for public endpoints, partial results are sometimes returned.

Runtimes

Finally we focus on runtimes for successfully executed queries, incorporating the total response time for
issuing the query and streaming all results. In Figure 5, we again present the runtimes for each query
considering different percentiles across all endpoints returning non-empty results in log scale. We see
quite a large variance in runtimes, which is to be expected given that different endpoints host datasets
of a variety of sizes and schemata on servers with a variety of computational capacity. In general, we see
that the 25th percentile roughly corresponds with the one second line, but that slower endpoints may
take tens or hundreds of seconds. The flat max trend seems to be the effect of remote timeout policies,
where query runtimes often maxed out at between 100–120 seconds, likely returning partial results.

16

B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 C6 D1 D2 D3 D4 E1 E2 E3 E4 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

100

101

102

103

Query

Q
u
er
y
ru
n
ti
m
es

(s
)

max

75th

50th

25th

Figure 5: Runtimes for different queries taking 25th, 50th (median), 75th and 100th (max) percentiles,
inclusive, across all endpoints returning non-empty results

Summary

Although we see a high success rate in asking for class and property partitions where we would expect
to have such data for over 90% of the endpoints, the success rate for queries using novel SPARQL 1.1
features drops to 25–50%. We also noted that for queries generating larger result sizes, thresholds and
timeouts would likely lead to only partial results being returned. But based on local experiments and
the implementations most prominently used by endpoints, we posit that the partial data returned by
these endpoints is likely to be accurate even if incomplete.

6 SPARQL Portal

Our primary motivation in this paper is to investigate a method for cataloguing the content of public
SPARQL endpoints without requiring them to publish separate, static descriptions of their content—or
indeed, for publishers to offer any additional infrastructure other than the query interface itself. In
the previous sections, we performed a variety of experiments that characterised the feasibilities and
limitations of collecting metadata about the content of endpoints by directly querying them. In this
section, we describe the Sportal catalogue itself, including its interfaces, capabilities and limitations.
A prototype of Sportal is available online at http://www.sportalproject.org.

Building the catalogue

The results of the self-descriptive queries are used to form a content description for each endpoint, which
collectively form the Sportal catalogue. This catalogue is indexed in a local SPARQL endpoint that
agents can access. The result for each self-descriptive query over each endpoint is loaded into a dedicated
Named Graph and annotated with provenance information using the model illustrated in Figure 6, which
follows the recommendations of the W3C PROV-O ontology [29] (based on the notion of activities and
entities). Each query run is (implicitly)16 considered to be an activity, with an associated start time and
end time. This activity uses a query entity and an endpoint entity to generate a query-result entity (a
Named Graph with the results). Each VoID dataset is derived from potentially multiple query-results.
We also keep track of other information, such as HTTP response codes, the number of triples generated
by the query, whether the query is SPARQL 1.0 or SPARQL 1.1, the text of the query, etc.

Example 1 provides a real-world example output from executing QB1 over an endpoint, with prove-
nance information following the model previously described.

16We do not explicitly type our entities with PROV-O classes simply to keep the data concise: memberships of the
respective classes could be inferred from the domain/range of the PROV-O properties we use.

17

http://www.sportalproject.org

s:QueryRun s:QueryResult
p:wasGeneratedBy

p:generated
v:Datasetp:derivedFrom

s:Endpoint

s:endpoint

sp:Query s:query

x:integer

s:responseCode
s:countTriples

x:string

sp:text
s:language

rs:label
s:responseHeader

x:dateTimeStamp

p:startedAtTime
p:endedAtTime

Figure 6: Sportal provenance data model

@prefix ep: <http://www.linklion.org:8890/sparql#> .
@prefix p: <http://www.w3.org/ns/prov#> .
@prefix s: <http://vocab.deri.ie/sad#> .
@prefix sp: <http://spinrdf.org/spin#> .
@prefix rs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix v: <http://rdfs.org/ns/void#> .
@prefix x: <http://www.w3.org/2001/XMLSchema#> .

PROVENANCE metadata
each query run is implicitly a p:Activity
ep:totalNumberOfTriplesQueryRun a s:QueryRun ;
p:generated ep:totalNumberOfTriplesResult ;
s:responseCode 200 ; s:countTriples 1 ;
p:startedAtTime "2015-05-11T21:20:54.065Z"^^x:dateTimeStamp ;
p:endedAtTime "2015-05-11T21:20:55.511Z"^^x:dateTimeStamp ;
rs:label "Extracting triple count from ’http://www.linklion.org:8890/sparql’ on 2015-05-11T21:20:54.065Z"@en ;
s:resultDataset ep:dataset ;
s:responseHeader "StatusCode=[HTTP/1.1 200 OK] & Server=[Virtuoso/07.00.3203 (Linux) x86_64-suse-linux-gnu]" ;
s:endpoint <http://www.linklion.org:8890/sparql> ; # s:endpoint sub-property of p:used
s:query ep:totalNumberOfTriplesQuery . # s:query sub-property of p:used

each query is implicitly a p:Entity
ep:totalNumberOfTriplesQuery a sp:Query ;
sp:text """PREFIX void: <http://rdfs.org/ns/void#>

CONSTRUCT { <http://www.linklion.org:8890/sparql#dataset> void:triples ?count }
WHERE { SELECT (COUNT(*) AS ?count) WHERE { ?s ?p ?o } }""" ;

s:language "SPARQL1.1" .

represents the RDF graph returned by the query, implicitly a p:Entity
ep:totalNumberOfTriplesResult a s:QueryResult ;
p:wasGeneratedBy ep:totalNumberOfTriplesQueryRun .

connects the dataset mentioned in the results and the graph storing the results
ep:dataset p:wasDerivedFrom s:totalNumberOfTriplesResult .

RDF GENERATED BY THE QUERY
loaded into the Named Graph ep:totalNumberOfTriplesResult
ep:dataset v:triples 77455301 .

Example 1: An example RDF output for QB1 with provenance metadata

18

SPARQL interface

Sportal itself provides a public SPARQL endpoint, where the RDF triples produced by the CONSTRUCT

clauses of the self-descriptive queries issued against public endpoints can themselves be queried. This
allows users with specific requirements in mind to interrogate our catalogue in a flexible manner.

To take a first example, a client could pose the following query asking for the SPARQL endpoints for
which the catalogue has the top 5 largest triple counts:� �

SELECT DISTINCT ?endpoint ?triples
WHERE { ?dataset v:triples ?triples ; v:sparqlEndpoint ?endpoint . }
ORDER BY DESC(?triples) LIMIT 5� �

This will return the following answer:17

?endpoint ?triples

http://commons.dbpedia.org/sparql 1,229,690,546
http://lod.b3kat.de/sparql 981,672,146
http://www.linklion.org:8890/sparql 727,421,750
http://live.dbpedia.org/sparql 560,701,025
http://linked.opendata.cz/sparql 555,666,667

As another example, referring back to the second client scenario mentioned in the introduction, take
a user who is interested in data about proteins and asks for endpoints with at least 50,000 instances of
bp:Protein, with results in descending order of number of instances. This user could ask:� �

SELECT DISTINCT ?endpoint ?instances
WHERE { ?dataset v:classPartition [v:class bp:Protein ; v:distinctSubjects ?instances] ;

v:sparqlEndpoint ?endpoint . FILTER(?instances > 50000) }
ORDER BY DESC(?instances)� �

This returns the following result:

?endpoint ?instances

https://www.ebi.ac.uk/rdf/services/reactome/sparql 260,546

As a final example combining scenarios 2 and 3 in the introduction, consider an agent looking for
SPARQL endpoints with at least 50 unique images of people, where this agent may ask:� �

SELECT DISTINCT ?endpoint ?imgs
WHERE {

?dataset v:classPartition [v:class f:Person ; v:propertyPartition [
v:property f:depiction; v:distinctObjects ?imgs]] ;

v:sparqlEndpoint ?endpoint . FILTER(?imgs > 50)
}
ORDER BY DESC(?imgs)� �

This returns the following result:

?endpoint ?imgs

http://eu.dbpedia.org/sparql 4,517
http://eudbpedia.deusto.es/sparql 4,517
http://data.open.ac.uk/query 311
http://apps.morelab.deusto.es/labman/sparql 78

Of course, this is just to briefly highlight three examples of the capabilities of Sportal and the kinds
of results it can return. One could imagine various other types of queries that a user could be interested
in posing over the Sportal catalogue, which supports a variety of types of queries referring to high-level
dataset statistics as well as schema-level information. However, the catalogue does not support finding
endpoints mentioning a specific resource or value, nor does it currently support keyword search on the
topic of the dataset.

17All such answers were generated from the Sportal catalogue in March 2016.

19

User interface

In order to use the SPARQL interface, the agent must first be familiar with SPARQL, and second must
know the IRI of the particular classes and/or properties that they are interested in. To help non-expect
users, Sportal also provides an online user interface with a number of functionalities.

First, users can search for specific endpoints by their URL, by the classes in their datasets, and/or
by the properties in their datasets. These features are offered by means of auto-completion on keywords,
meaning that the agent need not know the specific IRIs they are searching for. Taking a simple example,
if a user wishes to find endpoints with instances of drugs, they may type “drug” into the search bar
and then select one of the presented classes matching that search; once a class is selected, the user is
presented with a list of public endpoints mentioning that class, ordered by the distinct subjects for that
class partition (as available).

If a user clicks on or searches for an endpoint, they can retrieve all the information available about
that endpoint as extracted by the queries previously described, providing an overview of how many
triples it contains, how many subjects, how many classes, etc. (as available).

The Sportal user interface also includes some graphical visualisations of some of the high-level
features of the catalogue, such as the most popular classes and properties based on the number of
endpoints in which they are found, the most common server headers, and so forth. While this may not
be of use to a user with a specific search in mind, it offers a useful overview of the content available
across all endpoints on the Web, and the schema-level terms that are most often instantiated.

Updates

An important aspect of the Sportal service is to keep up-to-date information about current SPARQL
endpoints. Along these lines, we currently recompute the content descriptions every 15 days: we perform
a backup of the old catalogue and simply recompute everything from scratch. One shortcoming of
this approach is that the catalogue may miss endpoints that were temporarily unavailable during the
computation. Currently we do not implement any special workaround for this issue, but we could in
future consider importing data from the previous catalogue for endpoints, with a fixed limit for how long
into the past we are willing to still consider content descriptions as valid.

Comparison

In Table 11, we compare the Sportal catalogue with two other publicly available services that could be
used to find relevant SPARQL endpoints using VoID descriptions: DataHub and VoID Store. Unlike
Sportal, both of these services rely on publisher-contributed VoID descriptions.

In the comparison, we include all endpoints that had an associated VoID description in the given
service. For DataHub and VoID Store, it is possible to have multiple VoID descriptions associated
with an endpoint, and multiple endpoints associated with a VoID file. We count a SPARQL endpoint as
available if it could respond with a valid SPARQL response to the query (as used, for example, by the
SPARQLES system [10]):� �

SELECT ?s WHERE { ?s ?p ?o } LIMIT 1� �
For DataHub, VoID files are not hosted locally, where links are provided instead. We used the LDspider
v1.3 [24] crawler to download the VoID files from these URLs,18 from which we extract the availability
(number of VoID files successfully downloaded) and the content for later statistics.

To give a brief comparison of the coverage of the catalogues, we also display the number of unique
classes and unique properties that are associated in each catalogue with at least one endpoint; in more
detail, we count the unique classes and unique properties that would be returned for the following queries
over the catalogues, respectively:� �

SELECT DISTINCT ?c WHERE { ?s v:class ?c }� �
18The exact arguments used were -s seeds.txt -n -o output.nq -b 0 -any23 -bl .xxx, indicating to accept all for-

mats supported by any23, to follow redirects but not links (i.e., download seeds), and to not blacklist any file extensions.

20

Table 11: A comparison of the availability and coverage of Sportal, DataHub and VoID Store

Service
Endpoints Descriptions

Classes Properties
Total Available Total Available

Sportal 307 231 (75%) 298 298 (100%) 19,216 46,313
DataHub 200 115 (58%) 260 162 (62%) 1,636 829
VoID Store 118 69 (58%) 148 148 (100%) 30 217

� �
SELECT DISTINCT ?p WHERE { ?s v:property ?p }� �

Although this only partially captures the full wealth of information available in VoID, it gives an overview
of the diversity of domain terms indexed from endpoints.

From the results, with respect to endpoints, we see that Sportal has the broadest coverage: unlike
DataHub and VoID Store, it does not require publishers to compute and submit VoID descriptions
but rather computes them automatically. For this reason, we see that Sportal indexes twice as many
available endpoints as DataHub and more than three times that of VoID Store. We also see that the
endpoints that Sportal indexes have the highest availability ratio: for DataHub and VoID Store,
many of the indexed descriptions refer to endpoints that are long dead.

For both Sportal and VoID Store, descriptions are hosted locally, meaning that they are always
available when the respective catalogue is available; however, for DataHub, 38% of the VoID links
provided could not be resolved to RDF content by LDspider.

With respect to the class and property terms mentioned, we see that the Sportal catalogue contains
orders of magnitude more unique classes and properties than either DataHub or VoID Store.

From these results, we conclude that when compared to DataHub and VoID Store, clients using
Sportal can expect to find a broader range of relevant endpoints for (e.g.) a broader range of classes
and properties, and that the endpoints returned are more likely to be available and to still contain the
content in question. Thus we see the benefits of a catalogue based on computing content descriptions
rather than relying on those provided by publishers.

Limitations

Sportal naturally inherits many of the limitations raised during earlier experiments. For instance, the
previous example queries would probably miss endpoints that could not return results for the relevant
self-descriptive queries. In general, the catalogue should be considered a best-effort initiative to collect
as much metadata about the content of endpoints as possible, rather than a 100% complete catalogue.

Another limitation is that Sportal can only help to find endpoints based on the metadata collected
from self-describing queries, which mainly centres on the schema terms used. For example, the system
cannot help to find endpoints that mention a given literal, or a given subject IRI (which is partially
support by VoID Store using REGEX patterns), or to find endpoints based on the text of the description
or the tags associated with the relevant dataset (which is supported by DataHub), etc.

We must also note that by focusing on the problem of finding relevant SPARQL endpoints, Sportal
may miss relevant Linked Datasets that do not offer a SPARQL endpoint. According to statistics by
Jentzsch et al. [25], only 68% of the Linked Datasets surveyed provided a SPARQL endpoint. Hence, in
addition to missing out on endpoints that cannot answer the self-descriptive queries that Sportal issues,
we also do not cover Linked Datasets without SPARQL endpoints. However, our focus is specifically on
the problem of relevant SPARQL endpoints, which we argue is a sufficiently noteworthy problem in and
of itself: a problem that merits specialised methods such as those proposed in this paper.

7 Conclusions

In this paper, we proposed a novel cataloguing scheme for helping agents to find public SPARQL end-
points relevant to their needs. Given that the endpoints in question are made available by hundreds
of different parties, we chose to investigate a cataloguing system that works with the existing SPARQL

21

infrastructure and, for each endpoint indexed, only requires a working SPARQL interface. We ruled out
the option of flooding runtime requests to public SPARQL endpoints looking for the desired content
since this would lead to long runtimes and could generate a lot of traffic to public endpoints. Instead, we
proposed to use self-descriptive queries to incrementally generate high-level descriptions of the content of
public endpoints. We experimented with the performance of running these queries for four datasets and
four engines, showing that although Fuseki, Sesame and Virtuoso could successfully answer the queries
over small-to-medium-sized datasets, only Virtuoso managed to return results to some queries over larger
datasets. We then looked at what sort of success rate public endpoints had in answering these queries,
where out of 307 operational endpoints, the ratio of non-empty responses ranged from 25–94% depending
on the query in question. Finally we presented details of the Sportal prototype that uses the catalogue
we have extracted from public endpoints to help users find interesting datasets on the Web.

Although Sportal has its limitations, we have shown that it compares favourably with existing
services to help clients find SPARQL endpoints: when compared with DataHub and VoID Store, the
Sportal catalogue has better coverage of available endpoints and, for example, indexes a much broader
range of the class and property terms used in the data of remote endpoints. However, it lacks some
of the features of these other services: for example, exploring Linked Datasets (and not just SPARQL
endpoints) using tags, keyword search over dataset abstracts, searching by resource IRIs, etc.

Our goal in the immediate future is to build upon the existing prototype by seeking feedback from the
Linked Data community on what features they feel might be useful, and to gather feedback on the us-
ability of the system. We would also like to investigate fall-back methods of extracting metadata directly
from endpoints, such as incremental methods that query, e.g., for statistics about one class/property
partition at a time.19

The Sportal prototype is available online at http://www.sportalproject.org/.

Acknowledgements: This publication was supported in part by a research grant from Science Foun-
dation Ireland (SFI) under Grant Number SFI/12/RC/2289, by the Millennium Nucleus Center for
Semantic Web Research under Grant NC120004, and by Fondecyt Grant No. 11140900

References

[1] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann. Profiling and mining RDF data with Pro-
LOD++. In International Conference on Data Engineering (ICDE), pages 1198–1201, 2014.

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: an adaptive query
processing engine for SPARQL endpoints. In International Semantic Web Conference (ISWC),
pages 18–34. Springer, 2011.

[3] Z. Akar, T. G. Halaç, E. E. Ekinci, and O. Dikenelli. Querying the Web of Interlinked Datasets
using VOID Descriptions. In Linked Data On the Web (LDOW). CEUR, 2012.

[4] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets. In Linked
Data On the Web (LDOW). CEUR, 2009.

[5] S. Auer, J. Demter, M. Martin, and J. Lehmann. LODStats – an extensible framework for high-
performance dataset analytics. In Knowledge Engineering and Knowledge Management (EKAW),
pages 353–362. Springer, 2012.

[6] C. Basca and A. Bernstein. Querying a messy web of data with Avalanche. J. Web Sem., 26:1–28,
2014.

[7] W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, and S. Schlobach. LOD laundromat: A
uniform way of publishing other people’s dirty data. In International Semantic Web Conference
(ISWC), pages 213–228. Springer, 2014.

19However, the cost of such an approach would be a prohibitively large number of requests if there are a large number
of partitions.

22

http://www.sportalproject.org/

[8] C. Böhm, J. Lorey, and F. Naumann. Creating voiD descriptions for Web-scale data. J. Web Sem.,
9(3):339–345, 2011.

[9] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture for storing and
querying RDF and RDF schema. In International Semantic Web Conference (ISWC), pages 54–68.
Springer, 2002.

[10] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL Web-Querying Infras-
tructure: Ready for Action? In International Semantic Web Conference (ISWC), pages 277–293.
Springer, 2013.

[11] S. Campinas, R. Delbru, and G. Tummarello. Efficiency and precision trade-offs in graph summary
algorithms. In International Database Engineering & Applications Symposium (IDEAS), pages 38–
47, 2013.

[12] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In International Con-
ference on Distributed Computing Systems (ICDCS), pages 23–32, 2002.

[13] R. Cyganiak, H. Stenzhorn, R. Delbru, S. Decker, and G. Tummarello. Semantic Sitemaps: Efficient
and Flexible Access to Datasets on the Semantic Web. In European Semantic Web Conference
(ESWC), pages 690–704. Springer, 2008.

[14] O. Erling and I. Mikhailov. RDF support in the Virtuoso DBMS. In Networked Knowledge –
Networked Media. Springer, 2009.

[15] B. Fetahu, S. Dietze, B. P. Nunes, M. A. Casanova, D. Taibi, and W. Nejdl. A Scalable Approach
for Efficiently Generating Structured Dataset Topic Profiles. In European Semantic Web Conference
(ESWC), pages 519–534. Springer, 2014.

[16] M. A. Gallego, J. D. Fernández, M. A. Mart́ınez-Prieto, and P. de la Fuente. An Empirical Study
of Real-World SPARQL Queries. In USEWOD, 2011.

[17] H. Glaser, I. Millard, and A. Jaffri. Rkbexplorer.com: A knowledge driven infrastructure for Linked
Data providers. In European Semantic Web Conference (ESWC), pages 797–801. Springer, 2008.

[18] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and implementation of a clustered RDF
store. In Scalable Semantic Web Systems Workshop (SWSS), 2009.

[19] S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 query language. W3C Recommen-
dation, March 2013.

[20] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data summaries for
on-demand queries over linked data. In International Conference on World Wide Web (WWW),
pages 411–420, 2010.

[21] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for querying
graph structured data from the Wholst. In International Semantic Web Conference (ISWC), pages
211–224. Springer, 2007.

[22] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures
on the Semantic Web. Morgan & Claypool, 2011.

[23] T. Holst and E. Höfig. Investigating the relevance of Linked Open Data Sets with SPARQL queries.
In COMPSAC Workshops, pages 230–235, 2013.

[24] R. Isele, J. Umbrich, C. Bizer, and A. Harth. LDspider: An open-source crawling framework for
the Web of Linked Data. In International Semantic Web Conference (ISWC) Posters & Demos.
CEUR, 2010.

[25] A. Jentzsch, R. Cyganiak, and C. Bizer. State of the LOD Cloud. Online Report, September 2011.
http://lod-cloud.net/state/.

23

http://lod-cloud.net/state/

[26] S. Khatchadourian and M. P. Consens. Explod: Summary-based exploration of interlinking and
RDF usage in the Linked Open Data Cloud. In Extended Semantic Web Conference (ESWC),
pages 272–287. Springer, 2010.

[27] S. Kinsella, U. Bojars, A. Harth, J. G. Breslin, and S. Decker. An interactive map of Semantic Web
ontology usage. In International Conference on Information Visualisation, pages 179–184, 2008.

[28] A. Langegger and W. Wöß. RDFStats – An Extensible RDF Statistics Generator and Library. In
DEXA Workshops, pages 79–83, 2009.

[29] T. Lebo, S. Sahoo, and D. McGuinness. PROV-O: The PROV Ontology. W3C Recommendation,
April 2013.

[30] J. Lorey. Identifying and determining SPARQL endpoint characteristics. IJWIS, 10(3):226–244,
2014.

[31] E. Mäkelä. Aether - generating and viewing extended VoID statistical descriptions of RDF datasets.
In European Semantic Web Conference (ESWC), pages 429–433. Springer, 2014.

[32] M. Mehdi, A. Iqbal, A. Hogan, A. Hasnain, Y. Khan, S. Decker, and R. Sahay. Discovering domain-
specific public SPARQL endpoints: a life-sciences use-case. In International Database Engineering
& Applications Symposium (IDEAS), pages 39–45, 2014.

[33] N. Mihindukulasooriya, M. Poveda-Villalón, R. Garćıa-Castro, and A. Gómez-Pérez. Loupe – an
online tool for inspecting datasets in the Linked Data cloud. In International Semantic Web Con-
ference (ISWC) Posters & Demos. CEUR, 2015.

[34] M. Mountantonakis, C. Allocca, P. Fafalios, N. Minadakis, Y. Marketakis, C. Lantzaki, and Y. Tz-
itzikas. Extending VoID for expressing connectivity metrics of a semantic warehouse. In International
Workshop on Dataset PROFIling & fEderated Search for Linked Data (PROFILES), 2014.

[35] T. Omitola, L. Zuo, C. Gutteridge, I. Millard, H. Glaser, N. Gibbins, and N. Shadbolt. Tracing the
provenance of Linked Data using voiD. In International Conference on Web Intelligence, Mining
and Semantics (WIMS), page 17, 2011.

[36] H. Paulheim and S. Hertling. Discoverability of SPARQL Endpoints in Linked Open Data. In
International Semantic Web Conference (ISWC) Posters & Demos, pages 245–248. Springer, 2013.

[37] E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query. W3C Recommendation,
March 2013.

[38] D. Qiu and R. Srikant. Modeling and performance analysis of BitTorrent-like peer-to-peer networks.
In SIGCOMM, pages 367–378, 2004.

[39] B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL. In European
Semantic Web Conference (ESWC), pages 524–538. Springer, 2008.

[40] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-addressable
network. In SIGCOMM, pages 161–172, 2001.

[41] M. Ripeanu, A. Iamnitchi, and I. T. Foster. Mapping the Gnutella Network. IEEE Internet Com-
puting, 6(1):50–57, 2002.

[42] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pages 329–350, 2001.

[43] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: A federation layer for dis-
tributed query processing on Linked Open Data. In Extended Semantic Web Conference (ESWC),
pages 481–486. Springer, 2011.

24

[44] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw.,
11(1):17–32, 2003.

[45] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres. Comparing data summaries for
processing live queries over Linked Data. World Wide Web Journal, 14(5-6):495–544, 2011.

[46] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande, R. Cyganiak,
P. Colpaert, E. Mannens, and R. V. de Walle. Querying datasets on the Web with high availability.
In International Semantic Web Conference (ISWC), pages 180–196. Springer, 2014.

[47] G. T. Williams. SPARQL 1.1 Service Description. W3C Recommendation, March 2013.

[48] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry: a
resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communi-
cations, 22(1):41–53, 2004.

A Prefixes

In Table 12, we list all of the prefixes used in the paper.

Table 12: IRI prefixes used in the paper

Prefix IRI

bp: http://www.biopax.org/release/biopax-level3.owl#

dct: http://purl.org/dc/terms/

dbo: http://dbpedia.org/ontology/

e: http://ldf.fi/void-ext#

f: http://xmlns.com/foaf/0.1/

mo: http://purl.org/ontology/mo/

p: http://www.w3.org/ns/prov#

s: http://vocab.deri.ie/sad#

sp: http://spinrdf.org/spin#

rs: http://www.w3.org/2000/01/rdf-schema#

v: http://rdfs.org/ns/void#

x: http://www.w3.org/2001/XMLSchema#

25

http://www.biopax.org/release/biopax-level3.owl#
http://purl.org/dc/terms/
http://dbpedia.org/ontology/
http://ldf.fi/void-ext#
http://xmlns.com/foaf/0.1/
http://purl.org/ontology/mo/
http://www.w3.org/ns/prov#
http://vocab.deri.ie/sad#
http://spinrdf.org/spin#
http://www.w3.org/2000/01/rdf-schema#
http://rdfs.org/ns/void#
http://www.w3.org/2001/XMLSchema#

	Introduction
	Background
	Self-Descriptive Queries
	Local Experiments
	Remote Experiments
	SPARQL Portal
	Conclusions
	Prefixes

