Undefined n (2016) 1-14 1
10S Press

SPARQLES:
Monitoring Public SPARQL Endpoints

Editor(s): Jens Lehmann, AKSW, University of Leipzig, Germany
Solicited review(s): Ivan Ermilov, AKSW, University of Leipzig, Germany; Other reviewers anonymous

Pierre-Yves Vandenbussche 2, Jiirgen Umbrich b Luca Matteis ¢, Aidan Hogan d & Carlos Buil-Aranda ®

A Fujitsu (Ireland) Limited, Swords, Co. Dublin, Ireland — E-mail: pierre-yves.vandenbussche @ie.fujitsu.com
bVienna University of Economy and Business (WU), Austria — E-mail: juergen.umbrich@wu.ac.at

¢ Department of Computer Science, Sapienza University of Rome, Italy — E-mail: matteis@di.uniromal.it

d Center for Semantic Web Research, Department of Computer Science, University of Chile, Chile — E-mail:
ahogan@dcc.uchile.cl

€ Center for Semantic Web Research, Departamento de Informdtica, Universidad Técnica Federico Santa Maria,
Chile — E-mail: cbuil @inf.utfsm.cl

Abstract. We describe SPARQLES: an online system that monitors the health of public SPARQL endpoints on the Web by
probing them with custom-designed queries at regular intervals. We present the architecture of SPARQLES and the variety of
analytics that it runs over public SPARQL endpoints, categorised by availability, discoverability, performance and interoperabil-
ity. We also detail the interfaces that the system provides for human and software agents to learn more about the recent history
and current state of an individual SPARQL endpoint or about overall trends concerning the maturity of all endpoints monitored

by the system. We likewise present some details of the performance of the system and the impact it has had thus far.

Keywords: SPARQL endpoints, Linked Data, Semantic Web, Web of Data

1. Introduction

Thousands of Linked Datasets have been made
publicly available in recent years.! These datasets
span a plethora of topics, varying from general-
interest datasets like DBpedia [21]? or GeoNames?, to
more niche datasets on topics like proteins* or Poké-
mon>. Each dataset follows the Semantic Web stan-
dards [32,19] for describing its content, and the Linked
Data principles [8] for making that content accessible

LAt the time of writing, LODstats [14] reports 9,960 datasets:
http://stats.lod2.eu/ (all URLs in this paper were last ac-
cessed on 2016/05/24). The most recent “State of the LOD Cloud”
report found 1,014 datasets.

’http://datahub.io/dataset/dbpedia

3http://datahub.io/dataset/geonames- semantic-web

“http://datahub.io/dataset/uniprot-databases

Shttp://datahub.io/dataset/pokepedia-fr

on the Web. The goal is to enable clients to access these
diverse datasets in an automated and uniform way, and
also to combine content from multiple locations in a
similarly automated fashion.

To entice new consumers, many publishers began
hosting public SPARQL endpoints over their datasets
such that clients can pose complex queries to the server
as a single request and retrieve direct answers. Hun-
dreds of public SPARQL endpoints have thus emerged
on the Web in recent years [11]. These endpoints in-
dex content with a variety of topics and sizes and
(in theory at least) accept arbitrary SPARQL queries
from remote clients over the Web. However, applica-
tions using these endpoints have been slow to emerge.
The convenience of SPARQL queries for clients trans-
lates into significant server-side costs maintaining such
heavyweight query services, which translate into a va-

0000-0000/16/$00.00 (©) 2016 — IOS Press and the authors. All rights reserved

http://stats.lod2.eu/
http://datahub.io/dataset/dbpedia
http://datahub.io/dataset/geonames-semantic-web
http://datahub.io/dataset/uniprot-databases
http://datahub.io/dataset/pokepedia-fr

2 SPARQLES: Monitoring Public SPARQL Endpoints

riety of technical problems on the level of the SPARQL
infrastructure itself [11].

With respect to what that SPARQL infrastructure
consists of, the recent SPARQL 1.1 standard issued
recommendations relating to the following:

Query The SPARQL 1.1 Query Language recom-
mendation [18] extends the original SPARQL
Query Language [27] with features such as prop-
erty paths, sub-queries, aggregates, etc. The re-
lated SPARQL 1.1 Federated Query recommen-
dation [26] specifies how a SPARQL engine can
invoke a remote endpoint at runtime.

Protocol The SPARQL 1.1 Protocol recommenda-
tion [15] specifies how clients should interact
with a SPARQL endpoint over HTTP, includ-
ing how GET/POST requests should be structured,
what sorts of responses should be returned, etc.
Three output result formats have also been recom-
mended, extending the XML format introduced
in the original standard with options for returning
data in JSON or CSV/TSV.

Description The SPARQL 1.1 Service Description
recommendation [36] provides a vocabulary with
which the capabilities and configuration of a
SPARQL endpoint can be described in RDF such
that, for example, clients can discover endpoints
with the features they need.

Update The SPARQL 1.1 Update specification [16]
describes a language for inserting, deleting and
updating the data present in a SPARQL engine.

Entailment The SPARQL 1.1 Entailment Regimes
recommendation [17] describes how ontological
entailments can be included when computing the
answers for a SPARQL query.

With respect to public SPARQL endpoints, the lat-
ter two aspects of the SPARQL infrastructure are cur-
rently of lesser interest: updates to data are unlikely to
be enabled on a public query service and we do not
yet know of any public SPARQL endpoint supporting
entailment regimes. Thus, for clients of current public
endpoints, the former three aspects — query, protocol,
and description — appear to be of most relevance.

With respect to these three infrastructural aspects,
in previous work [11] we performed an empirical in-
vestigation of the maturity of public SPARQL end-
points from the perspective of the client, who we argue
needs endpoints that are: (i) highly-available through
the SPARQL protocol, thus allowing queries to be an-

swered reliably at any time; (ii) described using stan-
dard vocabularies in well-known locations, thus allow-
ing for the (automatic) discovery of relevant endpoints
over the Web; (iii) capable of answering queries in
acceptable time, thus enabling their use in real-time
applications; (iv) compliant with respect to support-
ing the query features of SPARQL (1.1), thus enabling
them to be interrogated alongside other endpoints in
a uniform manner. If an endpoint has high availabil-
ity, is well-described, supports all SPARQL 1.1 fea-
tures, and returns query answers quickly, we consider
it to meet all of the basic infrastructural requirements a
client would have. However, these goals fall on a con-
tinuum rather than being binary or discrete: for exam-
ple, endpoints may support a majority of features of
SPARQL 1.1, or may only be able to answer certain
queries within a given expected response time. Thus
the question is to what extent endpoints are mature. We
thus defined four general dimensions for assessing the
maturity of public SPARQL endpoints, as follows.

First, we looked at AVAILABILITY: the ratio of time
for which a given endpoint is responsive through the
SPARQL protocol, or alternatively, the probability of a
SPARQL endpoint being able to successfully respond
to a (simple valid) SPARQL query at a given point in
time. Endpoints are often provided on a not-for-profit
basis, where the resources available to host and main-
tain them may be limited and thus services may go of-
fline temporarily or even permanently without warn-
ing. Likewise, executing SPARQL queries can be ex-
pensive for a server, which may reach its capacity and
be unable to respond to further requests. An applica-
tion relying on a given endpoint would inherit these
underlying availability issues; the situation can be even
worse if an application relies on multiple endpoints.

Second, we looked at DISCOVERABILITY: the de-
gree to which an endpoint provides descriptions of
its content, configuration and functionality in well-
known locations using well-known vocabularies, such
that clients can (automatically) discover that endpoint
based on criteria such as the classes and properties
its content pertains to, the amount of data it contains,
the query features it supports, etc. Without these meta-
data, clients may struggle to find endpoints with con-
tent and features relevant for their needs.

Third, we looked at PERFORMANCE: the amount
of time taken for an endpoint to answer a query
over HTTP using standard SPARQL protocol meth-
ods. Evaluating a SPARQL 1.0 query is PSPACE-
complete [25]; the analogous complexity for SPARQL
1.1 evaluation is at least as hard. Of course, these types

SPARQLES: Monitoring Public SPARQL Endpoints 3

of worst-case queries are likely to be quite rare [4],
but even “PTIME queries” can require huge amounts
of processing to satisfy over even moderately-sized
datasets, which may make services slow and poten-
tially unsuitable for use in real-time applications.

Finally, we looked at INTEROPERABILITY: how
compliant the endpoint is with respect to the features
of the SPARQL 1.1 query language. In particular, an
endpoint that does not support some query features of
SPARQL 1.1 may not be interoperable with other end-
points or applications that expect these features to be
supported. This diversity in supported features means
that a client may not have a uniform query interface
common to all endpoints against which they can pro-
gram the logic of their application(s).

Given mixed results in our initial experiments [11],
we foresaw the need for an online system to track
such aspects of public endpoints over time, and to help
clients assess for themselves the maturity of individual
endpoints based on empirical data. Along these lines,
we initiated work on the SPARQL Endpoint Status
(SPARQLES) system, which is currently available at
http://sparqles.org/.5 The SPARQLES system
has been online since October 2013 (two years at the
time of writing), during which time we have made var-
ious refinements based on community feedback, and
have made the system more reliable and less expensive
for the public endpoints we monitor.

The SPARQLES system currently focuses on the

same dimensions we investigated in previous work [11]:

AVAILABILITY, DISCOVERABILITY, PERFORMANCE
and INTEROPERABILITY. While these dimensions
were selected by us in a somewhat ad hoc manner
based on our experience of working with endpoints —
rather than say the result of a systematic study — we ar-
gue that they provide a comprehensive insight into the
maturity of a given public SPARQL endpoint, touch-
ing upon the query, protocol and descriptive aspects
of the SPARQL infrastructure. While we cannot claim
that SPARQLES captures a complete set of metrics, we
are open to extending the system in future to consider
other measures, possibly with the help of the commu-
nity through our open source code-base, or perhaps as
the result of further research on the topic of evaluating
such public endpoint services. That is to say, we see
much potential for further work on this topic.

SSPARQLES is also a predecessor of an older system that
tracked only availability [33]: http://labs.mondeca.com/
sparqlEndpointsStatus.html.

This paper then extends upon previous works [11,
33] and describes the current SPARQLES system itself
in detail: how it is constructed, what sorts of tests it
performs, what queries it issues, what data it collects,
what kinds of conclusions can be drawn, what inter-
faces and visualisations are provided, etc. In Section 2,
we first discuss works relating to studies of public end-
points and monitoring Web services. In Section 3, we
introduce the high-level SPARQLES architecture. In
Section 4 we describe in more detail the analytics that
SPARQLES runs over public endpoints and in Sec-
tion 5 we describe the interfaces that we provide for
agents to interact with the data collected. In Section 6
we present evaluation of the system including runtimes
of analytics, growth in storage overheads, and A.PI.
performance. We later discuss the impact, limitations,
and sustainability of SPARQLES in Section 7 before
concluding with Section 8.

The SPARQLES system — both code and data —
is published under a Creative Commons 4.0 license
(@@®), with code available from https://github.
com/pyvandenbussche/sparqles and data avail-
able through interfaces described in Section 5.

2. Related Work

A number of works and systems have dealt with
issues relating to public SPARQL endpoints. The
DataHub’ catalogue lists hundreds of Linked Datasets,
many of which link to a SPARQL endpoint; it is the
resulting list of endpoints that we monitor. Lorey [22]
proposed a number of metrics for determining the
performance of SPARQL endpoints, such as latency,
throughput, random access time and join execution;
experiments were performed in controlled settings
rather than over public endpoints on the Web. Paul-
heim & Hertling [24] tried to find relevant SPARQL
endpoints for a random sample of ten thousand IRIs;
using VoID descriptions and the DataHub catalogue,
they were successful in about 15% of cases. Mehdi
et al. [23] proposed best-effort methods to find pub-
lic endpoints relevant to a list of domain-specific key-
words by querying endpoints for RDF literals gen-
erated from the terms. With respect to how public
SPARQL endpoints are being used, a number of works
have also performed analyses of the query logs of
prominent endpoints [4,29], which were made avail-

"nttp://datahub.io/

http://sparqles.org/
http://labs.mondeca.com/sparqlEndpointsStatus.html
http://labs.mondeca.com/sparqlEndpointsStatus.html
https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
http://datahub.io/

4 SPARQLES: Monitoring Public SPARQL Endpoints

able by the USEWOD initiative [7] and later by
LSQ [31]. While all of these works have helped to
build a more detailed picture of the current state-of-
the-art with respect to public SPARQL endpoints, none
provide an online system like SPARQLES, nor does
any one work look at the range of analytics we provide.

More generally, since public SPARQL endpoints
can be considered as Web Services, our work also re-
lates to the topic of monitoring Web Services, and in
particular, the notion of Quality of Service (QoS). One
of the seminal works in this area was by Ran [28], who
proposed an influential list of twenty-three QoS di-
mensions for Web services in four categories: runtime
(R), transaction support (T), configuration (C), and se-
curity (S). In this context, our work touches upon the
following dimensions:

Performance (R) The response time, latency and
throughput of the service.

Availability (R) The probability of a system being op-
erational at any given point in time.

Robustness/Flexibility (R) The degree to which a
service can cope with diverse inputs.

Exception Handling (R) The gracefulness with which
errors are handled and explained.

Supported Standard (C) The degree of compliance
of the service with respect to some standards.
Completeness (C) The ratio of advertised features

that are found to work in practice.

Some of the other QoS dimensions defined by Ran [28]
are either not currently relevant for public SPARQL
endpoints — such as authentication, authorization, etc.
— or cannot be easily tested in our setting — for exam-
ple, the accuracy of results. On the other hand, we also
consider the discoverability of endpoints, which refers
to how well the service describes itself, which was not
explicitly mentioned by Ran [28].

3. SPARQLES Architecture

The SPARQLES system is designed to observe a
set of public SPARQL endpoints over time. Currently
SPARQLES is tracking all of the endpoints listed in
the DataHub catalogue found using the DataHub APIs;
we thus align the inclusion criteria of SPARQLES with
that of the DataHub. SPARQLES performs a fixed set
of analytics against each listed endpoint at fixed inter-
vals, stores the historical results and allows these re-
sults to be accessed through online interfaces.

Offline

Endpoints (DataHub/Web)

\

Ana |ytiCS (Java/Jena)

B | Storage (MongoDB) o
A.P.l. (MongoDB/HTTP/ISON)

U.1. (node.js/nvd3)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. High-level System Architecture

The high-level architecture for observing the se-
lected endpoints is depicted in Figure 1, where we
show the offline and online parts of the system. The
offline parts are responsible for collecting information
about the endpoints. The online parts are responsible
for presenting the results to the clients of the system.
The main components are as follows:

Analytics (offine): responsible for performing analy-
sis over endpoints at regular intervals, thus pro-
ducing the raw observational data. This compo-
nent is implemented with custom Java code that
uses Jena as a query client to interact with end-
points over the SPARQL protocol. Analytics are
scheduled using cron jobs.

Storage (both): offers persistence over the results of
the offline Analytics component and enables on-
line querying and aggregation. For this, we use
MongoDB, which stores both low-level data —
such as the responses of endpoints to individual
queries — as well as higher-level, aggregated data
— such as the number of queries that succeeded in
the past month.

A.P.l. (online): offers software agents a RESTful ap-
plication programming interface through which
to query key data about endpoints. Agents may
access the A.P.I. through simple HTTP GET calls,

SPARQLES: Monitoring Public SPARQL Endpoints 5

which return JSON-formatted data from the stor-
age back-end.

U.l. (online): offers human agents a user interface
with a mix of aggregate visualisations and per-
endpoint visualisations. The search and user in-
teractions provided by the U.I. are built on top of
the data delivered by the A.P.I. The user interface
is implemented using the Node.js® Javascript run-
time engine and the nvd3® Javascript library for
rendering interactive visualisations.

We describe these components in more detail in the
following sections. In Section 4, we focus on the of-
fline phase, and in particular, the types of analytics
we run. Thereafter, in Section 5, we describe the stor-
age and online parts of the system, including the types
of interfaces that we provide for the public to interact
with the collected data by the SPARQLES system.

4. Analytics

We now provide details of the offline phase, and in
particular, the analytics performed by the system.

The following analytics are implemented with cus-
tom Java code that uses Apache Jena (2.12.2) to co-
ordinate making requests to and collecting responses
from SPARQL endpoints.'? These analytics are sched-
uled to run at regular intervals using cron jobs. SPAR-
QLES is hosted in the Vienna University of Economy
and Business (WU), served by a 1 Gigabit network.

4.1. Availability

In our previous experiments we found that many
endpoints have significant periods of downtime [11].
Some downtimes may be temporary, caused by net-
work failures, sporadic high server loads, engine
crashes, and so forth. Other downtimes appear perma-
nent, indicating that an endpoint has probably been
discontinued. Anticipating downtimes or distinguish-
ing reliable endpoints from unreliable ones can be cru-
cial for many clients. Hence SPARQLES closely mon-
itors the historical availability of endpoints.

8http://nodejs.org/
http://nvd3.org/
onttps://jena.apache.org/

Availability analytics We define an endpoint as avail-
able if it can respond to a simple SPARQL query
with some compliant response through the SPARQL
protocol. For this reason, rather than perform a ping
(which would only ensure that the host is accessible)
or a generic HTTP lookup (which would only ensure
that some web-page is available that could be, e.g., an
under-maintenance notice), we wish to ensure that the
endpoint can respond to basic queries. To avoid un-
necessary load on remote servers, we send queries that
should, in general, be simple to compute responses for.

Along these lines, to check availability, the system
first issues a generic ASK query as follows:

ASK WHERE { 7?s ?p 7o . }

Responding to this query should be trivial (is the index
empty or not?). As soon as a valid response (positive or
negative) is received, the system considers the request
successful and concludes that the endpoint is available.
However, some SPARQL endpoints cannot handle this
ASK query. For such endpoints, we try a second query
using the SELECT operation as follows:

SELECT 7?s WHERE { ?s 7?p 70 . } LIMIT 1

Again, this query should be cheap to compute: re-
turn any triple from the index (if any). We deem any
endpoint responding to either query with any valid
SPARQL response as available at that time.

Frequency We run availability tests once an hour,
which allows us to monitor, e.g., the uptimes at dif-
ferent times of the day, including hours of peak Web-
usage (performance will be discussed later). Availabil-
ity results can then be aggregated per endpoint into a
success rate for fixed time intervals, e.g., to compute
availability over the past day, week, month, etc.

Limitations The local SPARQLES server may expe-
rience some downtimes or local network issues that
may lead to remote endpoints being falsely reported as
unavailable. In general however, when errors known to
be local are omitted and when hourly results are ag-
gregated into larger time intervals, such as weeks or
months, such local effects should be smoothed out.

4.2. Discoverability
For a client, finding a SPARQL endpoint that con-

tains content relevant for their needs [24,11] and the
features that they require [11] can be challenging. The

http://nodejs.org/
http://nvd3.org/
https://jena.apache.org/

6 SPARQLES: Monitoring Public SPARQL Endpoints

goal of the discoverability analytics is to determine the
degree to which endpoints offer descriptions of them-
selves and their contents using (de facto) standards: to
what extent an endpoint offers descriptions — in well-
known locations using well-known vocabularies — of
(i) its content and (ii) the features it supports. The
SPARQLES system thus checks if a client can auto-
matically find, for a given endpoint:

1. An SD description of its configuration [36].
2. A VoID description of its content [3].

The type of engine (Fuseki, Virtuoso, etc.) powering
a SPARQL endpoint can also be an important infor-
mation for a client; for example, some engines support
non-standard keyword search functions that a client
may be interested in. We thus also look for:

3. The type of engine powering the endpoint, some-
times mentioned in the HTTP header [11].

SD Analytics Endpoint capabilities — such as the ver-
sion of SPARQL supported, query and update fea-
tures, I/0 formats, custom functions, and/or entailment
regimes — can be described in RDF using the SPARQL
1.1 Service Description (SD) vocabulary, which be-
came a W3C Recommendation in March 2013 [36].
Such descriptions, if made widely available, could help
a client find public endpoints that support the features
it needs (e.g., find SPARQL 1.1 endpoints).

The service description for an endpoint is retrieved
by simply dereferencing the endpoint IRI itself [36].
As such, the SPARQLES system performs a HTTP
GET request for an endpoint IRI, follows redirects and
uses content negotiation to request RDF formats (viz.
RDF/XML, N-Triples, Turtle or RDFa).

VoID Analytics 'The Vocabulary of Interlinked Data-
sets (VoID) [3] has become the de facto standard for
describing RDF datasets (in RDF). The vocabulary al-
lows for specifying, e.g., the number of triples a dataset
contains, the number of unique subjects, a list of prop-
erties and classes used, the number of triples with a
given property as predicate, the number of instances of
a given class, the number of triples used to describe in-
stances of a given class, and so forth. If VoID descrip-
tions were widely available for SPARQL endpoints, a
client could leverage them to discover endpoints with
potentially relevant content.

There are a number of best-practices regarding how
VoID should be published; SPARQLES looks in three
locations. First, the system looks in the content got-
ten by dereferencing the endpoint URL (i.e., the same

document as the SD description). Second, the system
checks the location denoted by the Well-Known IRI
pattern http://{domain}/.well-known/void rec-
ommended for use with VoID, where {domain} is re-
placed with the fully-qualified domain name (FQDN)
extracted from the endpoint URL [11]. Third, SPAR-
QLES uses the following query to detect if the end-
point indexes its own VoID description, where %%ep is
replaced with the URL of the endpoint in question:

PREFIX void: <http://rdfs.org/ns/void#>

SELECT DISTINCT 7ds

WHERE { ?ds a void:Dataset ;
void:sparqlEndpoint %%ep . }

Server Name Analytics A variety of options are
now available for SPARQL engines, including Virtu-
0so [13], Sesame [10], etc. However, performance and
compliance across different vendors can vary quite
dramatically. Knowing which engine — or even which
version of an engine — powers a given SPARQL end-
point may be useful for (expert) clients to know which
version of a query to send. For example, in previous
works we found that certain analogous strategies for
processing joins in a federated setting worked well for
certain SPARQL engines but performed poorly or even
outright failed for others [12].

Unfortunately, neither VoID nor the SD vocabu-
lary provide terms for specifying an engine or ver-
sion number to a client. Hints are available, such as
scanning the frontpage or an error page for mention
of a fixed list of engines. However, when dereferenc-
ing the endpoint URL, the type of engine and the ver-
sion number is often (though not always) provided in
the Server field of the HTTP header. Although not al-
ways provided — perhaps since it may require low-level
server configuration — this is the cleanest method we
have found to currently establish which implementa-
tion powers an endpoint without requiring hard-coded,
engine-specific heuristics.

Frequency When compared with availability, we do
not expect discoverability to be so dynamic: once de-
scriptions are published, they are likely to stay pub-
lished (and as discussed later, we do not check that
the descriptions are up-to-date). For this reason, we
run discoverability analytics once a week; we have re-
ceived no complaints from endpoint maintainers about
the remote expense of these analytics.

SPARQLES: Monitoring Public SPARQL Endpoints 7

Limitations SPARQLES only checks for the exis-
tence of meta-data, but does not attempt to validate the
meta-data itself, nor does it try to measure the com-
pleteness of descriptions. Additionally, VoID descrip-
tions or engine information may be extracted from lo-
cations or with vocabularies not checked by SPAR-
QLES: however, to help clients, we believe it is im-
portant for publishers to offer such information using
well-known vocabularies in discoverable locations.

4.3. Performance

SPARQLES runs a set of performance-related an-
alytics that aims to compare the runtimes of differ-
ent public endpoints for comparable queries from a
client’s perspective (i.e., including HTTP overhead).
Since we cannot control or know in detail about the
content of endpoints, for the purpose of comparability,
we must rely on generic queries that would execute in
a similar manner independent of the exact content in-
dexed by the endpoint. We test three fundamental as-
pects of a query engine: lookups, streaming and joins.

Lookup Analytics The goal is to measure the time
taken to perform an atomic lookup (according to differ-
ent triple patterns). The query template is as follows:

ASK {<x> 7p 7o}

Here <x> is replaced with an arbitrary IRI that is
not expected to exist in the remote data (a lookup
still needs to be performed to ensure this). To mitigate
caching effects, we generate a fresh IRI each time.

Since in the above example the subject is set, we
call it an ASK; query. We also run ASK,, ASK,, ASK;),,
ASKo, ASK o, ASK;p, versions of the query.

Given that an atomic lookup should be fast to exe-
cute, we consider this query as estimating the latency
of querying the endpoint, which would most likely be
dominated by the HTTP network overhead.

Streaming Analytics We measure the time taken for
an endpoint to stream a large result-set that should be
trivial to compute. The query is as follows:

SELECT * {7s ?p 7o} LIMIT 100001

Here we ask to stream 100,001 results. Since we
have found that public endpoints may limit maximum
result sizes to a “round number” — say 100,000 — we
ask for one hundred thousand and one results to de-
tect such a case. We also send queries for limits with

50,000, 25,000, 12,500, 6,250 and 3,125 results. Since
the endpoint should be able to stream results contigu-
ously from its index, we consider such queries as esti-
mating the maximum throughput of the service.

Join Analytics 'We use the following three queries to
measure a generic notion of join performance:

SELECT DISTINCT ?s 7q
WHERE {?s ?p 7o OPTIONAL {?s ?q <x>}} LIMIT 1000

SELECT DISTINCT ?s 7q
WHERE {?s ?p 7o OPTIONAL {<x> ?q ?s}} LIMIT 1000

SELECT DISTINCT 7o 7q
WHERE {?s ?p 7o OPTIONAL {<x> ?q 7o0}} LIMIT 1000

These queries are designed — insofar as possible — to
be comparable across endpoints no matter what con-
tent is indexed. In these queries, <x> is an fresh IRI not
expected to appear in the data. For example, the first
query requests that 1,000 unique subjects be joined
with a pattern that generates no answers: this join must
still be executed to check that ?q is indeed unbound.
The result will return 1,000 distinct subject—unbound
pairs. While the first query looks at s—s joins, the sec-
ond performs an s—o join and the third an o0—o join;
these three join-types were the most common found in
analyses of real-world logs [4,31].

Frequency Like availability, we expect performance
to vary for different times of the day, different days
of the week, etc. For this reason, like availability, we
would like to have frequent experiments. However, un-
like availability, the queries required to test perfor-
mance are not so trivial for endpoints to compute (we
present more details on this later). For this reason, we
opted to run performance experiments once a day; at
this level of frequency, we have received no complaints
from endpoint maintainers.

Limitations The performance results do not indicate
why specific queries are slow: is it due to the engine,
the HTTP overhead, the content indexed? In general,
we try to make the query load balanced irrespective of
the content and our goal is to measure the costs from
the perspective of a client who is concerned about the
“bottom line” of response times.

Performance results may also be affected by local
issues. For example, slow runtimes may be due to a
busy network on the SPARQLES end (e.g., if other an-
alytics happen to run simultaneously); to help mitigate
this issue, in the system’s interfaces, we display the

8 SPARQLES: Monitoring Public SPARQL Endpoints

median value of the last ten performance runs. Other
factors may be more difficult to control for; e.g., end-
points on servers that are geographically closer to the
SPARQLES host may be given an advantage. Still, the
performance results should serve as a useful guide.

4.4. Interoperability

If available, the Service Description of an endpoint
should describe the query features and the version of
SPARQL that an endpoint supports. However, we have
seen that SD meta-data are often unavailable and, in
any case, an endpoint may claim to support features
that it does not, or may claim support for SPARQL 1.1
while only supporting a subset of new features.

SPARQLES thus offers analytics for interoperabil-
ity, whose goal is to verify which SPARQL features
— i.e. specific operators, solution modifiers, etc. — are
supported, gathering data about what SPARQL fea-
tures are available for the users of various endpoints.

Along these lines, SPARQLES takes a subset of
queries from the W3C Data Access Working Group
test-cases — designed to test all features from both ver-
sions of the standard — and issues them on a weekly
basis to SPARQL endpoints. We consider the test as
passed if a valid SPARQL response is returned. Since
we cannot control the content of endpoints, we can-
not verify that the returned response is actually correct;
hence we may overestimate compliance with the stan-
dard. We expect that if an endpoint does not support a
feature, an exception will be thrown (e.g., a parse ex-
ception). However, since an endpoint may time-out on
a given query, we may also underestimate compliance
where the feature may be supported but the endpoint
cannot answer the query instance provided.

SPARQL 1.0 Analytics First, the SPARQLES sys-
tem tests the endpoints for the core SPARQL 1.0
query features that it supports. We issue endpoints a
subset of the Data Access Working Group test-cases
for SPARQL 1.0,!' omitting syntax tests and focus-
ing on core functionalities.!> This test-set checks a
range of aspects of the SPARQL 1.0 standard includ-
ing query types SELECT, CONSTRUCT and ASK (we omit
DESCRIBE since it is an optional feature); filter fea-
tures, such as REGEX, IRI and blank node checks, etc.;
support for datatypes, such as numerics, strings and

Unttp: //www.w3.org/2001/sw/DataAccess/tests/r2
12Queries available at https://github.com/
pyvandenbussche/sparqles.

booleans; support for graph selection features, includ-
ing FROM (NAMED) and GRAPH; and the solution mod-
ifiers, ORDER BY, LIMIT and OFFSET (DESC|ASC), as
well as DISTINCT and REDUCED modifiers.

SPARQL 1.1 Analytics SPARQLES also performs
tests on SPARQL 1.1 features using a test suite taken
from the W3C SPARQL Working Group.'?

We first test support for aggregates, where expres-
sions such as average, maximum, minimum, sum and
count can be applied over groups of solutions (possi-
bly using an explicit GROUP BY clause). We then test
support for sub-queries in combination with other fea-
tures. Next we test support for property-paths, binding
of individual variables, and support for binding tuples
of variables (VALUES). We also check support for fil-
ter features that check for the existence of some data
(MINUS, EXISTS), and some new operator expressions
(STRSTARTS and STRCONTAINS for strings; ABS for
numerics). Finally, the last three queries test a miscel-
lany of features including NOT IN used to check a vari-
able binding against a list of filtered values, an abbrevi-
ated version of CONSTRUCT queries whereby the WHERE
clause can be omitted, and support for the SPARQL
SERVICE keyword, which invokes a federated request
from the remote endpoint being tested to a local end-
point we have set up on the SPARQLES server.

Frequency Much like discoverability, we do not ex-
pect interoperability to be a highly dynamic property
of an endpoint; for example, we suppose that once an
endpoint adds support for SPARQL 1.1 features, it will
continue to support these features until it is discontin-
ued. For this reason, we schedule interoperability ana-
Iytics to run once a week. During the first year of oper-
ation, we began to receive complaints that the queries
we were using — based on the W3C test-cases — were
causing a high load on remote servers.'* We consid-
ered lowering the frequency of these analytics but in-
stead decided to make the queries less demanding by
refactoring them to include fresh IRIs in such a way
that it should be efficient for the server to compute that
the result is empty; as usual, we then simply monitor
for exceptions. With these new queries, we have re-
ceived no complaints thus far.

Bhttp://www.w3.0rg/2009/sparql/docs/tests/
data-sparqlil/

4See, e.g, https://github.com/pyvandenbussche/
sparqles/issues/23.

http://www.w3.org/2001/sw/DataAccess/tests/r2
https://github.com/pyvandenbussche/sparqles
https://github.com/pyvandenbussche/sparqles
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/
http://www.w3.org/2009/sparql/docs/tests/data-sparql11/
https://github.com/pyvandenbussche/sparqles/issues/23
https://github.com/pyvandenbussche/sparqles/issues/23

SPARQLES: Monitoring Public SPARQL Endpoints 9

Limitations As aforementioned, the main limitation
of these experiments is that we classify an endpoint
as implementing a specific SPARQL 1.1 feature if that
endpoint returns any valid response without throwing
an exception. If an endpoint times out, we will clas-
sify it as not implementing that feature, and conversely,
if it returns an incorrect solution, we will count it
as supporting that feature.!> Our recent refactoring of
the test-case queries has helped to reduce false nega-
tives due to time-outs. Another limitation is that the
SERVICE call relies on our local endpoint being acces-
sible; to mitigate problems, we designed the federated
call to be cheap and simple and to restart our local end-
point just before invoking these analytics.

Another limitation is that we do not test some fea-
tures of the SPARQL 1.1 standard, such as SPARQL 1.1
Update — since we presume we should not have write
privileges for public endpoints — or SPARQL 1.1 En-
tailment Regimes — since we do not know of any public
SPARQL endpoints with this feature.

5. Storage & Interfaces

We now describe how SPARQLES manages the ex-
perimental data gathered during these analyses and the
public interfaces through which software agents and
users can interact with these data.

5.1. Storage

As tests are performed, the results and metrics col-
lected are serialised using the Apache AVRO (1.7.5) li-
brary and sent to a MongoDB instance for storage. The
MongoDB instance maintains 11 different collections
that, loosely speaking, represent different materialised
views over the data collected:

— 4 collections store the “raw” version of the data
collected for the four analytical dimensions;

— 1 collection maintains the current list of endpoints
registered in the DataHub;

— 6 collections correspond to aggregated views of
the raw data as required by the User Interface.

The aggregate views are recomputed at regular in-
tervals using cron jobs: these views return the data re-

BStrictly speaking, a query timing out is not compliant with
SPARQL 1.1; however, in spirit, we are more interested about
whether a feature is supported in general and not about if a specific
query instance runs or not.

quired by the U.L in a single lookup and thus avoid
running aggregations while the user waits.

5.2. Application Programming Interfaces

SPARQLES provides seven RESTful APIs that fa-
cilitate remote access to the data collection. These
APIs are designed to provide clients with both (i) in-
formation relating to specific endpoints, as well as (ii)
information about all endpoints relating to a specific
type of analytical experiment. Likewise we split the
APIs into two groups, as follows.

The first group contains endpoint-specific APIs,
which helps to find a specific endpoint, or returns de-
tailed results for a specific endpoint:

LIST takes no input and returns a list of all endpoints
in SPARQLES: the URL of the endpoint, as well
as the name and URL of the dataset they are as-
sociated with in the DataHub catalogue.

AUTOCOMPLETE takes as input a string, such as
“dbpedia”, and returns all endpoints in SPAR-
QLES whose URL, dataset label, or dataset URL
contains the input as a sub-string.

INFO takes as input the URL of a specific endpoint,
and returns all data for that endpoint, including
dataset URL and label; availability over the past
day, week, month, and overall; performance re-
sults for cold/warm runs of ask and join queries
and suspected threshold size; interoperability in-
formation regarding support for SPARQL and
SPARQL 1.1 query features; and discoverabil-
ity information regarding locations (if any) where
VoiD and SD descriptions could be found, and the
server-name extracted from the HTTP header.

The second group contains analytical APIs, which
return aggregate results for all endpoints on a given
analytical dimension:

AVAILABILITY returns uptimes for the last test, day,
week, month — and overall — for all endpoints.

DISCOVERABILITY provides the server name, VoID
locations and SD availability found (if any) for
each endpoint in the most recent experiment.

INTEROPERABILITY counts the SPARQL 1.0 and
SPARQL 1.1 queries passed by each endpoint in
the most recent experiment.

PERFORMANCE provides the mean performance for
join and ask queries in cold/warm runs from the
most recent experiment for all endpoints.

The APIs are provided and described online at:
http://sparqles.org/api.

http://sparqles.org/api

10 SPARQLES: Monitoring Public SPARQL Endpoints

e

AVAILABILITY ~ PERFORMANCE INTEROPERABILITY DISCOVERABILITY

Q 546 endpoints

SPARQL ENDPOINTS STATUS >

AVAILABILITY

@5 O5-75 ®F5-05[O @599 @[@s-100]

0
2011-02 2012-10 201405 2015-11

Fig. 2. Screen capture of SPARQLES’ homepage focusing on the
availability overview. The homepage offers “at-a-glance” aggregated
views for the four dimensions of analytics described.

5.3. User Interface

The SPARQLES user interface — available on the
Web at http://sparqles.org/ — offers an entry
point for human users interested in the experimental
results. The interface is implemented using the Node.js
Javascript runtime engine and the nvd3 Javascript li-
brary for rendering interactive visualisations.

The homepage offers “at-a-glance” aggregated views
of the four dimensions computed across all endpoints.
In Figure 2, for example, we see the aggregate view
for availability, which shows the evolution of the num-
ber of endpoints falling into five different availability
intervals ([0-5[, [5-75[, [75-95[, [95-99[, [99-100]).
Other aggregate views likewise provide an overview
of performance, interoperability and discoverability.

From the homepage, the user has a number of pos-
sible navigation steps, as illustrated in Figure 3.

The user can navigate to a page dedicated to each
dimension to get an overview of key results for all end-
points in a list view, as follows:

AVAILABILITY lists the availability for each endpoint
over the past 24 hours and the past 7 days.

PERFORMANCE lists the suspected result-size thresh-
old and the median cold/warm run-times for ASK
and JOIN queries over the last 10 runs.

— data

— api

index —— discoverability —— endpoint

— interoperability —

— performance —|

L— availability —

Fig. 3. SPARQL user-interface sitemap

INTEROPERABILITY lists the ratio of SPARQL 1.0
and SPARQL 1.1 query test-cases passed by each
endpoint in the most recent run.

DISCOVERABILITY indicates whether or not a VoID
and/or SD description is available for each end-
point in some location, and what server name
could be found (if any), in the most recent run.

Otherwise, either by using the auto-complete search
function (available on all pages), or by clicking on
a specific endpoint mentioned in one of the previous
four list-view pages, the user can arrive to an endpoint-
specific view with detailed information about all four
dimensions for a given endpoint. An example for the
main DBpedia endpoint is provided in Figures 4 and 5
(referring to the same page but split here for format-
ting purposes). The views provide information on the
weekly availability for the past year, median perfor-
mance for the past ten runs, the interoperability test
queries failed or passed'® as well as the locations in
which VoID/SD descriptions can be found and the
server name detected (if any).

From the homepage, there are also links to down-
load data dumps or view the A.P.I. documentation.

160n hovering the mouse pointer over the query name, the user
can see the full query, and on hovering over a red icon, the user can
see details of the exception encountered.

http://sparqles.org/

SPARQLES: Monitoring Public SPARQL Endpoints 11

HTTP://DBPEDIA.ORG/SPARQL

t- DBpedia

AVAILABILITY

100.00%

Last Day (100%); last Week (100%): last Month (99.72%). overall (99.24%)

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
1 O] | | | [[O—|

ZGM 1147 2014-12-08 2014-12-31 2015-01-23 2015-02-15 2015-03-10 2015-04-02 2015-04-26 2015-05-19 2015-06-11 2015-07-04 2015-07-27 2015-08-19 2015-09-11 2015-10-05 2015-10-28 20151123

PERFORMANCE

Cold ASK Tests @ Warm ASK Tests

Suspected Result size threshold: 18,000
Cold JOIN Tests @ Warm JOIN Tests.

19.60

0.00 5.00 10.00 15.00 19.60

Fig. 4. Screen capture of the detailed view for the DBpedia endpoint (http://dbpedia.org/sparql) showing the results of availability tests
for the past year and performance tests based on the median result for the most recent ten runs.

6. Evaluation

SPARQLES has been running since October 2013
where, as of November 2015, it monitors 545 pub-
lic endpoints. We now present some high-level results
with respect to operating, maintaining and improving
various aspects of the SPARQLES system.

Analytics With respect to running the individual an-
alytical tasks, we measured the time of the four most
recent runs within the SPARQLES system.

The fastest were the AVAILABILITY experiments,
which took between 41-44 minutes (¢ = 41.8 minutes,
o = 1.1 minutes) in the four most recent runs. These
experiments involve sending either one or two simple
queries to each server. This runtime fits within the cur-
rent one hour interval; however, if we were to increase
the number of endpoints observed by about 33%, we
would need to increase the interval to (say) two hours,
to ensure that the analytics terminate in time.

Second were the DISCOVERABILITY experiments,
which took between 65—-67 minutes (4 = 65.5 minutes,
o = 1 minute) in the most recent four runs. These ex-

periments involve sending a single query and check-
ing two Web documents for metadata about each end-
point. These experiments could easily be maintained
at the weekly interval, even if the number of endpoints
observed were to increase, e.g., a hundredfold.

Third were the INTEROPERABILITY experiments,
which took between 65-87 minutes (¢ = 72.6 minutes,
o = 9 minutes) in the four most recent runs. These
experiments involve running 42 queries against each
remote endpoints. However, since we have refactored
these queries to return empty results, they should be
trivial to run. These experiments are likewise easily
maintained within their current weekly interval.

Fourth were the PERFORMANCE experiments, which
took between 537-614 minutes (1 = 583.5 minutes, &
= 28.8 minutes) in the four most recent runs. Against
each endpoint, we run 17 queries twice (once cold
and once warm). These experiments take significantly
longer than the others: although INTEROPERABILITY
has more queries, the queries in PERFORMANCE are
designed to be non-trivial to answer, returning thou-
sands of results and requiring a significant amount of
processing for the endpoint to service. Within the cur-

http://dbpedia.org/sparql

12 SPARQLES: Monitoring Public SPARQL Endpoints

INTEROPERABILITY
SPARQL 1.0 features
sellfil(regex)]

selfiltbooll
conlopt]
sellempty]
con(]

sel-distinctl]

selld
sel(filiri]

GOOO0606006060660606006600600

DISCOVERABILITY

Server Name

VolD Description
name has been detected in the HTTP Get T

Virtuoso'

respon

SPARQL 1.1 features

0000000600066 0606060060

sellmax]

Service Description

Fig. 5. Screen capture of the detailed view for the DBpedia endpoint (http://dbpedia.org/sparql) showing the results of interoperability
(individual queries passed or failed) and discoverability tests (locations of VoID and SD descriptions) in the most recent run.

rent daily interval and settings, we could support these
analytics for about twice the number of endpoints.

Storage With respect to the growth of data in the
SPARQLES system, the maximum amount of data we
collect per endpoint is given in Table 1, where, each
week, we store an upper limit of 177 JSON objects and
4,415 JSON key-value pairs per endpoint (we store
fewer key—value pairs if an endpoint is unavailable). In
terms of the growth of endpoints, one can see from Fig-
ure 2 that the number of endpoints increases gradually.
Hence we can conclude that the storage overhead of
SPARQLES is sustainable, particularly given the abil-
ity of MongoDB to scale horizontally across machines.
For example, as of November 2015, SPARQLES was
monitoring 545 endpoints, and thus collecting 96,465
JSON objects and a max. of 2,406,1175 JSON key—
value pairs per week, where the compressed dump of
all historical data was 397 megabytes, corresponding
to a live MongoDB index of 14 gigabytes.

A.PI. In order to ensure that our A.P.I’s would per-
form well under high loads, we sent 1,000 requests to
each of our A.P.I’s from 10, 50 and 100 parallel clients
respectively. Figure 6 provides box-plots of the indi-
vidual runtimes encountered. Under this type of load,

Table 1

Data items stored by SPARQLES per endpoint: Freq. denotes the
frequency of experiments, KV denotes the maximum number of
key—value pairs generated per experiment, O/W denotes the num-
ber of JSON objects generated per week (each experiment gener-
ates one JSON object), and KV/W denotes the maximum number of
key—value pairs per week (i.e., KV/W = KV xO/W)

Analysis Freq. KV O/W KV/W
AVAILABILITY hourly 11 168 1,848
PERFORMANCE daily 306 7 2,142
DISCOVERABILITY weekly 35 1 35
INTEROPERABILITY weekly 390 1 390
Total — — 177 4,415

although we see that the slowest request can range in
the tens of seconds (especially for a higher number of
clients), typical performance in the lower three quar-
tiles remains reliably below half a second. In summary,
we encounter a few slow requests that require up to 20
seconds to complete, but the majority of requests are
answered within 0.5 seconds, even with 100 clients si-
multaneously issuing 1,000 requests.

Usability We collect and react to user feedback re-
lating to bugs, feature-requests and usability on the

http://dbpedia.org/sparql

SPARQLES: Monitoring Public SPARQL Endpoints 13

~ 10,000 | T = 10000}
= E . E -
N A
() B 1 Q B
E i | E i
2 1000 Illlll 12 100}
(=] - E = -
15 g] 15 g
o B] & B
7 = 7
) I = | [I
~ |] a2 |
100 | i 100 |
L l l l l l l l . L l

= N 10‘000 = T T E
1 E g 1
N

] 5} |]

1 £ i |

j 2 1,000} .

] =} =]

i e B i

= 1 % | == = 1
i 15} | == = i

] [a%7 |]

= 100 | =

[R [I N I SO N N

SERERARY
Interface

(a) 10 clients

PR OTIEURY
Interface

(b) 50 clients

SRR
Interface

(c) 100 clients

Fig. 6. A.P.I. response times for 1,000 requests with 10, 50 and 100 parallel clients. On the x-axis, AUT. denotes Autocomplete, AVA. denotes
Auvailability, D1S. denotes Discoverability, INT.. denotes Interoperability, PERF.. denotes performance. The y-axis shows the response times in
milliseconds; the axis is given in log scale and aligned horizontally for comparison across the three plots. The box plots are drawn for the
maximum, third quartile (75" percentile), median, first quartile (25™ percentile) and minimum times from the individual responses.

issue tracker for the project, which as of 2015/01/30
contained 21 open issues and 24 closed issues; we re-
fer the interested reader to https://github.com/
pyvandenbussche/sparqles/issues for details on
individual comments. Feedback has related to var-
ied aspects, be it misreported statistics for the end-
points maintained by users, or the expense of certain
queries for remote services, or problems with charac-
ters/escaping in the interface, or requests for various
enhancements. This feedback has been invaluable for
improving the usability, correctness and sustainability
of the service. For example, one of the most important
changes we have made based on this feedback was to
modify the INTEROPERABILITY queries to reduce the
computational strain they were placing on the public
endpoints that SPARQLES monitors. We are continu-
ing to address the open issues and consider the other
feedback and requests for enhancements that we re-
ceive from the community.

7. Discussion

We now discuss the use-cases, impact thus far, lim-
itations and sustainability of SPARQLES.

7.1. Impact
One of the main goals of the system is to dissemi-

nate timely information about the health of individual
endpoints. To help characterise the impact of SPAR-

w 1S00FTT T T T T T T T T T T T T T T T T T

=

)

=

2

Q9 1,000 -

(T

S

o)

g 500 8

=)

Z A B A
?@?@333??33??333?@@??@@
S LR R R
SOLFTET IS IFSTOLITEFTTESS

Fig. 7. Number of unique sessions per month for SPARQLES

QLES, in the following we present some statistics col-
lected from the Google Analytics for the site.

Over a 23 month period, SPARQLES has seen a to-
tal of 11,420 user sessions, averaging about 497 ses-
sions per month. Figure 7 presents the data for the past
23 months, where we see a peak in October 2013, after
which the number of user sessions was between 172
(February 2014) and 823 (June 2015). Table 2 presents
the number of sessions along with the most visited first
pages, second pages, and third pages.!”

Another indirect goal of the system is to encour-
age endpoints to follow best practices: we would hope

17Please note that since we cannot access raw data, some of the
figures may be rounded (for example, the Google Analytics system
reports “3.4K” rather than an exact figure). Likewise we only have
details of visits to the top twenty pages, hence we may only have an
upper-bound for other pages.

https://github.com/pyvandenbussche/sparqles/issues
https://github.com/pyvandenbussche/sparqles/issues

Table 2

SPARQLES: Monitoring Public SPARQL Endpoints

Number of SPARQLES sessions over a 22 month period spanning

from 2013/09/27-2015/07/27.

START PAGE 15T INTERACTION 2NP INTERACTION
Total 11,420 Total 3,400 Total 2,300
/ 8,300 /availability 1,500 specific endpoint 1,202
specific endpoint 1,247 specific endpoint 949 /availability 340
/availability 1,200 /discoverability 286 / 326
/discoverability 221 /interoperability 214 /interoperability 179
/interoperability 172 /performance 201 /performance 151
/performance 45 / 133 /discoverability 126
/api 16 /api 27 /api <12
/data <11 /data <7 /data <12

that by tracking such metrics about endpoints, main-
tainers might be made aware of shortcomings with the
SPARQL services they offer and rectify these accord-
ingly. Though from personal communications with
some endpoint maintainers we know that there have
been anecdotal instances of this,!3 it is difficult to as-
certain to what degree SPARQLES has had an impact
on the maturity of SPARQL endpoints in this respect.

Perhaps the most important impact of this work has
been to formally acknowledge the kinks in the current
public SPARQL infrastructure, which has helped moti-
vate new lines of research. We can, for example, point
to work on Linked Data Fragments, which points to
our AVAILABILITY and PERFORMANCE statistics to
justify why alternatives to SPARQL are needed [34,
35]. We can also point to our own work which takes
into account the result-size limitations of endpoints
from our PERFORMANCE results to motivate custom
federation strategies [12]. Aside from using the statis-
tics from SPARQLES to motivate new lines of re-
search, a number of research works have also used
the SPARQLES system itself, for example, Benedetti
et al. [6] use our endpoint list, and in particular our
AVAILABILITY and INTEROPERABILITY statistics, to
find active endpoints supporting SPARQL 1.1 features
(as their profiling tool requires); Rietveld & Hoek-
stra [30] use the SPARQLES search API to provide
endpoint search functionality in their SPARQL client;
Atemezing & Troncy [5] use our API to collect a list
of SPARQL endpoints for their experiments; Acosta
et al. [1,2] use our PERFORMANCE statistics to de-
sign hybrid query plans that take the limitations of end-
points into account; and so forth.

18See for example https://github.com/pyvandenbussche/
sparqles/issues/42.

7.2. Limitations

For each of the analytics presented in Section 4,
we discussed a variety of specific limitations, refer-
ring, e.g., to the difficulty in distinguishing local prob-
lems from remote problems. There are also a couple of
global limitations of the system worth mentioning.

First, SPARQLES is subject to Goodhart’s law,
which states: “When a measure becomes a target, it
ceases to be a good measure.” An over-eager endpoint
maintainer could, e.g., detect and artificially respond
to SPARQLES’ queries so as to improve how the end-
point is “rated” by the system. We know of no such
example of this happening but it is possible.

Second, as a more pragmatic issue, since we first put
the system online in October 2013, we have had var-
ious local reliability issues, where data were not col-
lected for certain weeks, where data were lost due to
server migration, and where the site itself was offline.
During this period, we have been resolving various is-
sues as they occur such that, although there are still
some known issues, we now believe that the system is
reaching maturity. Likewise, we have received a lot of
feedback from the community, which has been invalu-
able for improving the service in the past years.

Third, some of the analytics may be biased towards
servers that are closer geographically to the SPAR-
QLES host in Austria. One option to mitigate this bias
— as well as local reliability issues — would be to repli-
cate SPARQLES analytics in multiple remote loca-
tions and create a mechanism for aggregating a global
consensus across all remote instances. Currently we
do not have the resources available to host another in-
stance of SPARQLES. However, the SPARQLES code
is available for download, where the community can

https://github.com/pyvandenbussche/sparqles/issues/42
https://github.com/pyvandenbussche/sparqles/issues/42

SPARQLES: Monitoring Public SPARQL Endpoints 15

download and install their own instances, perhaps tar-
geted at those endpoints of interest to them.

7.3. Sustainability

One indirect but important aspect of sustainabil-
ity is the load that SPARQLES puts on the public
SPARQL infrastructure. For example, we discussed
before about how the original versions of the interop-
erability queries were causing a heavy load for a num-
ber of SPARQL services. To mitigate this, we run more
expensive tasks less frequently: while simple availabil-
ity tests are done hourly, performance analytics are run
daily and interoperability tests are run weekly. Like-
wise we have revised the interoperability queries to
make them less costly and have been attentive in ad-
dressing all complaints raised in our issue tracker re-
lating to the cost SPARQL puts on remote servers.

With respect to the long term sustainability of
SPARQLES, the system is currently hosted on a uni-
versity server in Austria and we have the commitment
of the university — including help from system admin-
istrators — to continue hosting the service for the fore-
seeable future. We also provide a weekly dump of his-
torical data, which is backed-up internally, as well as
the open-source code and instructions needed to gen-
erate a new SPARQLES instance. Assuming a worst
case scenario where the university would no longer
be able to host the service or the data and we were
no longer contactable, someone from the community
could create a fresh instance of SPARQLES, albeit (in
that unlikely scenario) without historical data. We of
course welcome the community to mirror the service
and also the historical data. Again, all code and data
are available under CC-BY (€@®), Version 4.0.

7.4. Future Directions

As the system has been maturing, we have started to
consider adding some new features as requested by the
community. One of the most popularly requested fea-
tures is to have data collected by the SPARQLES tool
made available as Linked Data. Though we are (per-
haps ironically) reluctant to make a SPARQL endpoint
available, as a starting point, we are looking into cre-
ating Linked Data IRIs for individual endpoints that
dereference to SPARQLES statistics about them. Other
requested features included offering an email notifica-
tion system to contact endpoint administrators when
their system was not available, or offering badges for
endpoints with high availability, and so forth. There are

numerous directions in which SPARQLES could still
be improved, which we will tackle as time progresses.

More in terms of research, we foresee a number of
potential future directions relating to SPARQLES and
the monitoring of public SPARQL endpoints. One pos-
sible direction would be to look, more systematically,
at further dimensions of quality specific to SPARQL
endpoints — perhaps in the broader context of the sur-
vey of Linked Data quality by Zaveri et al. [37] — and
to design practical tests and more detailed metrics by
which to monitor endpoints. Another potentially fruit-
ful area for future investigation would be to perform
formal usability studies for the system — testing times
users need to perform set tasks, conducting AB tests,
etc. — and adapting the SPARQLES infrastructure ac-
cordingly. Although we have been reacting to com-
munity feedback through the issue tracker and other
sources, this has been in an ad hoc manner: controlled
user studies would offer a more structured approach to
improving SPARQLES.

We remain very much open to future collaboration
with the community along these or other lines.

8. Conclusion

In this paper, we have presented the SPARQL End-
point Status (SPARQLES) system for keeping track of
the health and maturity of public SPARQL endpoints.
We presented the high-level architecture, which con-
sists of an offline component for running tests over
endpoints, and an online component for providing vi-
sualisations and A.P.I’s for the collected results. We
presented four dimensions of analytics that the system
runs over public endpoints. Thereafter, we presented
some of the details of the interfaces SPARQLES pro-
vides for human and automated agents to interact with
the underlying data collection. We also presented some
measures with respect to the overall runtime of analyt-
ics, the growth in storage requirements, and the perfor-
mance of our A.P.I’s under load. Finally, we discussed
some aspects relating to the high-level impact, limita-
tions and sustainability of the tool.

In general, we believe that the SPARQLES system
provides the community with a unique perspective on
public SPARQL endpoints. The online system helps to
shed light not only on some of the cobwebs and cracks
in the SPARQL infrastructure, but also on the cream
of the crop: those SPARQL endpoints that are highly-
available, readily-discoverable, highly-performant and
highly-interoperable.

16 SPARQLES: Monitoring Public SPARQL Endpoints

Acknowledgements This work was supported by Fu-
jitsu Laboratories Limited, by CONICYT/FONDE-
CYT Project no. 3130617, by FONDECYT Project
no. 11140900, by DGIP Project no. 116.24.1, and by
the Millennium Nucleus Center for Semantic Web Re-
search under Grant NC120004. We would like to thank
the reviewers of this and our previous paper, and var-
ious other members of the Linked Data community,
for their feedback on SPARQLES. We also wish to
thank the Open Knowledge Foundation for hosting the
project for over a year.

References

[1] M. Acosta, M. Vidal, F. Flock, S. Castillo, C. Buil-Aranda, and
A. Harth. SHEPHERD: A shipping-based query processor to
enhance SPARQL endpoint performance. In Horridge et al.
[20], pages 453-456.
M. Acosta, M. Vidal, F. Flock, S. Castillo, and A. Harth.
PLANET: query plan visualizer for shipping policies against
single SPARQL endpoints. In Horridge et al. [20], pages 189—
192.
K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. De-
scribing linked datasets. In C. Bizer, T. Heath, T. Berners-
Lee, and K. Idehen, editors, Proceedings of the WWW2009
Workshop on Linked Data on the Web, (LDOW) 2009, Madrid,
Spain, April 20, 2009., volume 538 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2009.
M. Arias Gallego, J. D. Fernandez, M. A. Martinez-Prieto, and
P. de la Fuente. An empirical study of real-world SPARQL
queries. In B. Berendt, L. Hollink, V. Hollink, M. Luczak-
Rosch, K. Moller, and D. Vallet, editors, Proceedings of the
Ist International Workshop on Usage Analysis and the Web of
Data (USEWOD 2011) co-located with the 20th International
World Wide Web Conference (WWW 2011), Hyderabad, India,
March 28th, 2011, 2011.
[5] G. A. Atemezing and R. Troncy. Towards a linked-data based
visualization wizard. In O. Hartig, A. Hogan, and J. Se-
queda, editors, Proceedings of the 5th International Workshop
on Consuming Linked Data (COLD 2014) co-located with the
13th International Semantic Web Conference (ISWC 2014),
Riva del Garda, Italy, October 20, 2014., volume 1264 of
CEUR Workshop Proceedings. CEUR-WS.org, 2014.
F. Benedetti, S. Bergamaschi, and L. Po. Visual querying
LOD sources with LODeX. In K. Barker and J. M. Gémez-
Pérez, editors, Proceedings of the 8th International Conference
on Knowledge Capture, K-CAP 2015, Palisades, NY, USA,
October 7-10, 2015, pages 12:1-12:8. ACM, 2015. DOI:
10.1145/2815833.2815849.
B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rosch,
K. Moller, and D. Vallet. Usage analysis and the Web
of Data. SIGIR Forum, 45(1):63-69, 2011. DOLI:
10.1145/1988852.1988864.
[8] T. Berners-Lee. Linked Data. Design issues for the World
Wide Web, World Wide Web Consortium, 2006.
[9] E. Blomgqvist and T. Groza, editors. Proceedings of the ISWC
2013 Posters & Demonstrations Track, Sydney, Australia, Oc-

2

—

3

—

[4

—

[6

—

[7

—

tober 23, 2013, volume 1035 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

[10] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A
generic architecture for storing and querying RDF and RDF
schema. In I. Horrocks and J. A. Hendler, editors, The Seman-
tic Web — ISWC 2002, First International Semantic Web Con-
ference, Sardinia, Italy, June 9—12, 2002, Proceedings, vol-
ume 2342 of Lecture Notes in Computer Science, pages 54—68.
Springer, 2002. DOI: 10.1007/3-540-48005-6_7.

[11] C. Buil-Aranda, A. Hogan, J. Umbrich, and P. Vandenbussche.
SPARQL web-querying infrastructure: Ready for action? In
H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X.
Parreira, L. Aroyo, N. F. Noy, C. Welty, and K. Janowicz, edi-
tors, The Semantic Web — ISWC 2013 — 12th International Se-
mantic Web Conference, Sydney, NSW, Australia, October 21—
25, 2013, Proceedings, Part II, volume 8219 of Lecture Notes
in Computer Science, pages 277-293. Springer, 2013. DOI:
10.1007/978-3-642-41338-4_18.

[12] C. Buil-Aranda, A. Polleres, and J. Umbrich. Strategies for ex-
ecuting federated queries in SPARQLI1.1. In P. Mika, T. Tu-
dorache, A. Bernstein, C. Welty, C. A. Knoblock, D. Vran-
decic, P. T. Groth, N. F. Noy, K. Janowicz, and C. A. Goble,
editors, The Semantic Web — ISWC 2014 — 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-
23, 2014. Proceedings, Part II, volume 8797 of Lecture Notes
in Computer Science, pages 390—405. Springer, 2014. DOI:
10.1007/978-3-319-11915-1_25.

[13] O. Erling. Virtuoso, a Hybrid RDBMS/Graph Column Store.
IEEE Data Eng. Bull., 35(1):3-8, 2012.

[14] 1. Ermilov, M. Martin, J. Lehmann, and S. Auer. Linked Open
Data Statistics: Collection and exploitation. In P. Klinov and
D. Mouromtsev, editors, Knowledge Engineering and the Se-
mantic Web — 4th International Conference, KESW 2013, St.
Petersburg, Russia, October 7-9, 2013. Proceedings, volume
394 of Communications in Computer and Information Sci-
ence, pages 242-249. Springer, 2013. DOI: 10.1007/978-3-
642-41360-5_19.

[15] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres.
SPARQL 1.1 Protocol. W3C Recommendation, March 2013.

[16] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Update.
W3C Recommendation, March 2013.

[17] B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes.
W3C Recommendation, March 2013.

[18] S. Harris and A. Seaborne. SPARQL 1.1 Query Language.
W3C Recommendation, March 2013.

[19] P. Hitzler, M. Krotzsch, B. Parsia, P. F. Patel-Schneider, and
S. Rudolph. OWL 2 Web Ontology Language Primer. W3C
Recommendation, Oct. 2009.

[20] M. Horridge, M. Rospocher, and J. van Ossenbruggen, edi-
tors. Proceedings of the ISWC 2014 Posters & Demonstrations
Track — a track within the 13th International Semantic Web
Conference, ISWC 2014, Riva del Garda, Italy, October 21,
2014, volume 1272 of CEUR Workshop Proceedings. CEUR-
WS.org, 2014.

[21] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,
and C. Bizer. DBpedia — A large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web, 6(2):167-195,
2015. DOI: 10.3233/SW-140134.

[22] J. Lorey. Identifying and determining SPARQL endpoint char-
acteristics. IJWIS, 10(3):226-244,2014. DOI: 10.1108/IJWIS-

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

SPARQLES: Monitoring Public SPARQL Endpoints 17

03-2014-0007.

M. Mehdi, A. Igbal, A. Hogan, A. Hasnain, Y. Khan, S. Decker,
and R. Sahay. Discovering domain-specific public SPARQL
endpoints: a life-sciences use-case. In B. C. Desai, A. M.
de Almeida, J. Bernardino, and E. F. Gomes, editors, /8th In-
ternational Database Engineering & Applications Symposium,
IDEAS 2014, Porto, Portugal, July 7-9, 2014, pages 39-45.
ACM, 2014. DOI: 10.1145/2628194.2628220.

H. Paulheim and S. Hertling. Discoverability of SPARQL end-
points in linked open data. In Blomqvist and Groza [9], pages
245-248.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.
DOI: 10.1145/1567274.1567278.

E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Feder-
ated Query. W3C Recommendation, March 2013.

E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation, January 2008.

S. Ran. A model for web services discovery with
QoS. SIGecom Exchanges, 4(1):1-10, 2003. DOI:
10.1145/844357.844360.

L. Rietveld and R. Hoekstra. Man vs. machine: Differences in
SPARQL queries. In B. Berendt, L. Hollink, and M. Luczak-
Rosch, editors, Proceedings of the 4th International Workshop
on Usage Analysis and the Web of Data (USEWOD 2014)
co-located with the 11th Extended Semantic Web Conference
(ESWC 2014), Cretel, Greece, May 25th, 2014, 2014.

L. Rietveld and R. Hoekstra. The YASGUI Family of SPARQL
Clients. Semantic Web Journal, 2016. (Accepted; pre-print
available from http://www.semantic-web-journal.
net/content/yasgui-family-sparql-clients-0).

[31]

(32]

(33]

[34]

[35]

[36]

[37]

M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and
A. Ngonga Ngomo. LSQ: the linked SPARQL queries
dataset. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. T. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, and S. Staab, editors, The Semantic Web —
ISWC 2015 — 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part
11, volume 9367 of Lecture Notes in Computer Science, pages
261-269. Springer, 2015. DOI: 10.1007/978-3-319-25010-
6_15.

G. Schreiber and Y. Raimond. RDF 1.1 Primer. W3C Working
Group Note, June 2014.

P. Vandenbussche, C. Buil-Aranda, A. Hogan, and J. Umbrich.
Monitoring SPARQL endpoint status. In Blomqvist and Groza
[9], pages 81-84.

R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D.
Vocht, M. V. Sande, R. Cyganiak, P. Colpaert, E. Mannens, and
R. V. de Walle. Low-cost queryable linked data through triple
pattern fragments. In Horridge et al. [20], pages 13-16.

R. Verborgh, M. V. Sande, P. Colpaert, S. Coppens, E. Man-
nens, and R. V. de Walle. Web-scale querying through Linked
Data Fragments. In C. Bizer, T. Heath, S. Auer, and T. Berners-
Lee, editors, Proceedings of the Workshop on Linked Data on
the Web (LDOW) co-located with the 23rd International World
Wide Web Conference (WWW 2014), Seoul, Korea, April 8,
2014., volume 1184 of CEUR Workshop Proceedings. CEUR-
WS.org, 2014.

G. T. Williams. SPARQL 1.1 Service Description. W3C Rec-
ommendation, March 2013.

A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and
S. Auer. Quality assessment for Linked Data: A survey. Se-
mantic Web, 7(1):63-93, 2016. DOI: 10.3233/SW-150175.

http://www.semantic-web-journal.net/content/yasgui-family-sparql-clients-0
http://www.semantic-web-journal.net/content/yasgui-family-sparql-clients-0

