
A Taxonomy of Basic Graph Pattern Motifs for
Understanding SPARQL Query Logs
Jaime Salas

1
, Aidan Hogan

1

1DCC, Universidad de Chile; IMFD

Abstract

Popular SPARQL query endpoints hosted by open knowledge graphs such as Wikidata and DBpedia

process hundreds of thousands or even millions of queries per day. Making sense of queries at this scale

is challenging. We propose a taxonomy of basic graph patterns (BGPs) in order to induce a hierarchical

structure from such patterns found in a large query log. The leaves of this taxonomy are the raw basic

graph patterns extracted from each query of the log. Each layer thereafter applies a generalisation step

followed by a canonicalisation step, with each layer representing an increasingly coarse partition based

on an increasingly more general motif. Generalisations are applied for constant subjects/objects (nodes),

constant predicates (edge labels), direction, constant/variable distinction, and homomorphic equivalence.

We discuss use-cases, define these generalisation steps, and apply them to induce a taxonomy of BGPs

from a subset of the Wikidata query log.

Keywords
SPARQL, canonicalisation, query logs, graph queries, Wikidata

1. Introduction

There are now hundreds of public SPARQL endpoints available on the Web [14], with some of

the largest, such as those hosted by DBpedia [12] and Wikidata [6], evaluating in the order of

hundreds of thousands or millions of queries per day. Although supporting such a volume of

queries poses significant engineering and scientific challenges [14, 6], samples of these logs

have been published [6, 12], and provide significant research opportunities [7]. Specifically,

these query logs contain key insights into the distribution of queries of interest to different

clients in practice in terms of the complexity of the query patterns [13, 3], which operators are

more (or less) frequently used [3, 12], which operators tend to be used together [3], whether

queries originate from humans or bots [9, 17], how clients refine or modify queries from one

request to the next [16], etc.

Thus, given a large SPARQL query log such as that published for Wikidata [6], or as part of

the Linked SPARQL Queries dataset [12], there is a wide range of analyses that a researcher or

database administrator can run in order to gain insights into trends in those queries. What we

argue is missing is a way to organise and “browse” the queries of such logs hierarchically. We

AMW’23: Alberto Mendelzon International Workshop on Foundations of Data Management, May 22–26, 2023, Santiago,
Chile
$ jaime.os.salas@gmail.com (J. Salas); ahogan@dcc.uchile.cl (A. Hogan)

� https://aidanhogan.com/ (A. Hogan)

� 0000-0002-9353-8955 (J. Salas); 00000-0001-9482-1982 (A. Hogan)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jaime.os.salas@gmail.com
mailto:ahogan@dcc.uchile.cl
https://aidanhogan.com/
https://orcid.org/0000-0002-9353-8955
https://orcid.org/00000-0001-9482-1982
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


envisage the ability to make sense of large SPARQL query logs via a taxonomy that begins with

very general (equivalence) classes of queries that become increasingly more specific in lower

layers, providing first a high-level view of categories that open up into more and more specific

categories of queries.

The design of such a taxonomy is challenging, and indeed there are potentially many ways in

which such a taxonomy can be defined. But we think the idea is worth exploring in order to help

bring order to large SPARQL query logs. In this work, we take some initial steps in this direction

by focusing on the case of basic graph patterns [4], proposing a taxonomy to induce a hierarchical

structure from them. This structure is based on generalisation and canonicalisation [10] steps

applied iteratively at each layer of the hierarchy, inducing a set of motifs at each layer that

constitute a partition of the queries considered. We currently foresee five use-cases:

Human vs. bot detection [9, 17]: The taxonomy can help identify motifs for highly-regular

queries, such as parameterised queries used by bots.

Caching [15, 8]: The taxonomy can identify frequent motifs that, if cached, could increase

cache hit rates and improve query evaluation performance.

Optimisation [1]: The taxonomy could be used to decide on specialised indexes and optimi-

sations to reduce the costs for frequent motifs.

Benchmarking [11, 2]: The taxonomy can be used to classify different types of graph patterns

for benchmarking, enabling the comparison of different engines for different motifs.

Log exploration [3]: The taxonomy can help, for example, to identify unusual traffic through

highly-specific motifs with large numbers of instances.

Paper outline In Section 2, we discuss related works that classify or generalise queries from

SPARQL logs. Section 3 presents the taxonomy we propose, while Section 4 presents the results

of applying our taxonomy to a sample of the Wikidata query logs. Section 5 concludes.

2. Related Work

The use of SPARQL query logs for understanding user demands has become a rich topic of

interest, leading to a wide body of research. For space reasons, we focus on those works that

specifically look at generalising and/or classifying real-world queries in such logs.

The first category of related works extract high-level query patterns for the purpose of

analysing logs. Bonifati et al. [3] present a detailed analysis of the Wikidata and LSQ query

logs, where they present frequency distributions relating to query size, operator usage, etc., but

also look at the graph structure of basic graph patterns, defining a list of different graph shapes
that correspond to a specific subset of the high-level motifs explored here.

The second category of works process log queries for the purposes of benchmarking. Saleem

et al. [11] propose a framework, called FEASIBLE, that extracts different features from queries,

such as join vertex degree and shape, number of triple pattern and their selectivity, etc.; these

features are used to select a small number of representative queries for a benchmark. Angles et



al. [2] propose high-level categories of subqueries (BGPs, property paths, etc.) for the Wikidata

query log that are then used to compare the performance of different engines.

In terms of novelty, rather than pre-defining shapes/motifs, we instead pre-define a set of

generalisation steps that can produce arbitrary motifs. We are also not aware of works that

propose a hierarchical way to structure such motifs.

3. A Taxonomy of Basic Graph Pattern Motifs

In this section, we present our proposed taxonomy of BGPs based on increasingly high-level

motifs induced by a sequence of generalisation steps. We first present definitions, then an

example, and finally summarise how we implemented software to compute the taxonomy.

Preliminaries. Let I, L and V denote the set of all IRI, literal and variable terms, respectively.

A triple pattern 𝑡 = (𝑠, 𝑝, 𝑜) ∈ (I ∪ L ∪V)× (I ∪V)× (I ∪ L ∪V) is an RDF triple allowing

variables in any position. We use C = I∪L to denote constants where the distinction between

IRIs and literals does not matter. A set of triple patterns is called a basic graph pattern (BGP).
1

Letting 𝐵 denote a BGP, we denote by vars(𝐵) the set of variables appearing in 𝐵, by cons(𝐵)
the set of constants appearing in 𝐵, by nodes(𝐵) the set of subject/object terms (i.e., nodes) in

𝐵, and by labs(𝐵) the set of predicate terms (i.e., edge labels) in 𝐵.

Given a BGP 𝐵, we will define a sequence of generalisation steps that form increasingly

high-level equivalence classes of BGPs induced by patterns that we call motifs. Specifically, a

generalisation step 𝑠 is a transformation of a BGP that yields an equivalence relation ∼𝑠 on BGPs

such that, given two BGPs 𝐴 and 𝐵, we say that 𝐴 ∼𝑠 𝐵 if and only if 𝑠(𝐴) = 𝑠(𝐵). We then

call 𝑠(𝐴) (or equivalently 𝑠(𝐵)) an 𝑠-motif. To define specific generalisation steps, we introduce

a partial term mapping 𝜏 : C∪V → C∪V whose domain is denoted by dom(𝜏). Given a BGP𝐵,

we denote by 𝜏(𝐵) the image of 𝐵 under 𝜏 , i.e., 𝜏(𝐵) = {(𝜏 ′(𝑠), 𝜏 ′(𝑝), 𝜏 ′(𝑜)) | (𝑠, 𝑝, 𝑜) ∈ 𝐵}
where 𝜏 ′(𝑥) = 𝜏(𝑥) for all 𝑥 ∈ dom(𝜏), and 𝜏 ′(𝑥) = 𝑥 for all 𝑥 /∈ dom(𝜏); i.e., 𝜏 rewrites

some of the terms in 𝐵, leaving terms for which it is not defined as they are. Letting s, p and o

denote the subject, predicate and object positions, we may also use selective images to rewrite

terms only in selected positions; for example, 𝜏s,o(𝐵) = {(𝜏 ′(𝑠), 𝑝, 𝜏 ′(𝑜)) | (𝑠, 𝑝, 𝑜) ∈ 𝐵} only

rewrites subject and object terms with 𝜏 .

Proposed Taxonomy. There are innumerable distinct generalisation steps that one could

consider, and indeed the “best” choice may depend on external factors such as the particular

use-cases, logs, etc., involved. The order in which the generalisation steps are applied can also

affect the resulting taxonomy. In the following, we propose a concrete set of generalisation

steps inspired by the idea of incrementally generalising the graph structure of BGPs. As a

zeroth step, we abstract away variable names from the input BGPs (modulo isomorphism).

In subsequent steps we abstract away the values of particular constants in order to yield an

increasingly abstract graph structure. We then abstract away edge labels and direction in order

to yield a directed and then undirected graph, respectively. Thereafter we abstract away the

distinction between constants and variables, and finally we compute the core of the graph. As

1

We assume that blank nodes appearing in a BGP are mapped to fresh variables [10].



aforementioned, this is one way in which generalisation steps can be applied. Exploring other

possible steps, and the motifs and taxonomies they yield, is an interesting topic for future work.

Definition 3.1. We define the following generalisation steps, where 𝐴 and 𝐵 are BGPs:

0. The zeroth step generalises variable names, capturing isomorphism modulo variables. We

say that 𝐴 ∼0 𝐵 if and only if there exists a one-to-one term mapping 𝛼 : vars(𝐴) →
vars(𝐵) such that 𝛼(𝐴) = 𝐵.

1. The first step further generalises constant nodes in a BGP, capturing isomorphism modulo

variables and constant nodes. We say that 𝐴 ∼1 𝐵 if and only if there exists a one-to-one

term mapping 𝛽 : nodes(𝐴)∩ cons(𝐴) → nodes(𝐵)∩ cons(𝐵) such that 𝛽s,o(𝐴) ∼0 𝐵.

2. The second step further generalises constant edge labels (predicates) in a BGP, capturing

isomorphism modulo variables and constants. We say that 𝐴 ∼2 𝐵 if and only if there

exists a one-to-one term mapping 𝛾 : labs(𝐴) ∩ cons(𝐴) → labs(𝐵) ∩ cons(𝐵) such

that 𝛾p(𝐴) ∼1 𝐵.

3. The third step generalises edge labels, capturing isomorphism of the directed graph of

the BGP while still distinguishing constants and variables. Let c ∈ C and v ∈ V denote

a reserved constant and variable, respectively. Let 𝛿 : C ∪V → {c, v} denote a term

mapping such that 𝛿(𝑥) = c for all 𝑥 ∈ C and 𝛿(𝑥) = v for all 𝑥 ∈ V. We say that

𝐴 ∼3 𝐵 if and only if 𝛿p(𝐴) ∼2 𝛿p(𝐵).

4. The fourth step generalises edge direction, capturing isomorphism of the undirected

graph of the BGP while still distinguishing constants and variables. Let 𝐵± = {(𝑠, 𝑝, 𝑜) |
(𝑠, 𝑝, 𝑜) ∈ 𝐵 or (𝑜, 𝑝, 𝑠) ∈ 𝐵} denote the completion of 𝐵. We say that 𝐴 ∼4 𝐵 if and

only if 𝐴± ∼3 𝐵
±

.

5. The fifth step generalises constant and variable distinction, capturing isomorphism of the

undirected graph of the BGP without distinguishing constants and variables. Here we

choose to map constants to variables. We say that 𝐴 ∼5 𝐵 if and only if there exists a

one-to-one term mapping 𝜖 : cons(𝐴) ∪ cons(𝐵) → V ∖ (vars(𝐴) ∪ vars(𝐵)) such that

𝜖(𝐴) ∼4 𝜖(𝐵).

6. The sixth step generalises non-core edges and nodes, capturing homomorphic equivalence

of the undirected graph of the BGPs. We say that there is a homomorphism from 𝐴
to 𝐵, denoted 𝐴 → 𝐵, if and only if there exists a term mapping 𝜇 : vars(𝐴) →
vars(𝐵)∪cons(𝐵) such that 𝜇(𝐴) ⊆ 𝐵. We then say that 𝐴 and 𝐵 are homomorphically

equivalent modulo variables, denoted 𝐴 ≃0 𝐵, if and only if 𝐴 → 𝐵 and 𝐵 → 𝐴. Let us

overload the previous definitions, where we denote by ≃0,...,5 the steps ∼0,...,5 replacing

the zeroth step ∼0 with ≃0. We say that 𝐴 ∼6 𝐵 if and only if 𝐴 ≃5 𝐵.

Each generalisation step 𝑠 induces a partition of a set of BGPs ℬ via the quotient set ℬ/∼𝑠.

Example. Take the following SPARQL query, which intuitively asks for information about

papers published in AMW that cite other AMW papers:

SELECT ?x ?p ?o WHERE { ?x :venue :AMW . ?y :venue :AMW . ?x :cites ?y . ?x ?p ?o . }

Figure 1 presents the result of the previously defined generalisation steps for the BGP of this

query, where we use circles to represent existential values whose particular value does not



:AMW

:venue

:venue

:cites

(a) Zeroth step

:venue

:venue

:cites

(b) First step (c) Second step (d) Third step

(e) Fourth step (f) Fifth step (g) Sixth step

Figure 1: Proposed generalisation steps applied to an example SPARQL query

matter, solid lines to indicate constants, and dashed lines to indicate variables. Each step creates

an increasingly high-level motif. Applying these generalisations to a set of BGPs then generates

a partition according to BGPs having the same motif at that level. By design, each generalisation

step builds upon the previous, which means that the partition induced by each step is strictly

finer that the one that came before, inducing a hierarchical taxonomy.
2

Implementation. We implemented the extraction of the aforementioned taxonomy using

the QCan package [10], which offers methods for canonicalising SPARQL queries. Specifically,

QCan represents SPARQL BGPs as RDF graphs in a reified form using r-graphs. The package

can then invoke the blabel package [5], which canonically labels existential values, and can also

perform RDF leaning, which is used to calculate the core of the graph required for step 6.

4. An Analysis of Wikidata’s BGPs

In this section, we extract the taxonomy from the BGPs of a large sample of queries from the

Wikidata SPARQL logs [6]. We work with two samples: a subset of the robotic queries, and a

subset of the organic/human queries. The samples are taken from queries received between

2018-02-26 and 2018-03-25, i.e., the most recent interval available in the Wikidata SPARQL logs.

Though performance is not a focus of the current work, we note that computing the taxonomy

for close to four million BGPs took a little over three hours.

2

An unintended consequence of layering generalisation steps is that, by renaming predicates separately from nodes,

the second step may rename a constant in a predicate position differently from how the first step renamed the same

constant in a node position; correspondences for constants in predicate and node positions are lost. A solution

would be to merge the first and second steps, losing some granularity, or defining the second step directly over the

zeroth step without using a selective image.



Table 1
The number of unique motifs, and the largest equivalence class for a single motif, found for each step in
the robotic and organic BGPs from Wikidata.

(a) Robotic BGPs

Step Unique Max

0 107,583 239,523
1 2,380 251,956
2 240 590,529
3 198 590,880
4 143 590,880
5 55 1,190,351
6 3 1,780,647

(b) Organic BGPs

Step Unique Max

0 134,329 286,994
1 13,315 388,836
2 1,776 586,021
3 1,279 590,948
4 917 590,948
5 332 1,290,264
6 4 2,197,940

Robotic queries We first present the results for robotic queries. We took a random sample

of 1,000,000 queries from the set of robotic queries in the interval. We then extracted all the

BGPs contained in these queries, giving us a total of 1,781,337 BGPs. Table 1a presents some

high-level statistics, showing the number of motifs generated at each step, along with the

motif (equivalence class) with the largest number of BGPs. The results clearly show that each

successive level of the taxonomy finds less unique motifs, while finding larger equivalence

classes for these queries. This is of interest for exploring the logs: a user starting at step 6 (the

highest level) can expand to a reasonable number (55) of child motifs at step 5, ordered by size;

expanding these motifs from step 5, they can expect, on average, 2–3 child motifs, and so forth.

In Table 2, we present the top 5 motifs at each step for these robotic queries, starting from

step 1. As before, dashed lines indicate variables while solid lines indicate constants. At step

1, the motifs represent parameterised queries, where nodes (subjects/objects), specifically, are

generalised. The Wikidata properties P300 and P214 seen in this step indicate an ISO 3166-2
code for countries, and a VIAF ID used by libraries, respectively. The results show that the most

common BGPs are composed of single triple patterns. The top motif is unusual in that it has

no variable: it stems from a syntactic shortcut used in Wikidata for selecting the languages of

labels returned by a custom service. We also see that the third, fourth and fifth motifs contain

two variables; such BGPs may form part of a larger query, and be contained, for example, in an

OPTIONAL clause. Steps 2 and 3 are quite similar to each other. We see that the most common

motif in both steps refers to a singleton BGP with a constant predicate and variable nodes, but

in the second and fifth positions, we see popular join shapes. Step 4 generalises edge direction,

where we see a similar set of results to the previous two steps; the motif with a single edge

having a constant and variable node is more prominent here as it merges two cases from step 3:

one where the subject is the variable, and the other where the object is the variable. Removing

the constant/variable distinction in step 5, we see many of the simpler motifs merged into the

first two motifs, but thereafter, we see different types of joins, including disconnected patterns

in the fourth and fifth positions; these disconnected patterns are due to geographic queries

that apply a join between two variables based on geographic distance, rather than a natural

equi-join. At step 6, which looks at the cores of the step 5 graphs, we find three motifs: 1,780,647



Table 2
Top 5 motifs for robotic queries after each step

Step
Rank of motif per number of occurrences

1 2 3 4 5

1

wb:language s:description rdfs:label wdt:P300 wdt:P214

251,956 135,073 95,105 88,199 83,229
(14.14%) (7.58%) (5.33%) (4.95%) (4.67%)

2

c c1 c2 c c c1c2

590,529 342,885 286,728 268,915 71,524
(33.15%) (19.25%) (16.10%) (15.10%) (4.02%)

3 590,880 342,886 296,520 270,846 71,664
(33.17%) (19.25%) (16.65%) (15.20%) (4.02%)

4 590,880 348,187 302,953 296,520 76,558
(33.17%) (19.55%) (17.01%) (16.65%) (4.30%)

5 1,190,353 428,815 68,540 53,511 26,998
(66.82%) (24.07%) (3.85%) (3.00%) (1.52%)

6 1,780,647 649 41
— —

(99.96%) (0.04%) (0.002%)

BGPs collapse to a core with a single edge between two nodes (this includes acyclic queries and

queries with even-length cycles, for example), 649 BGPs collapse to a self-loop on one node

(this includes all and only queries with a self-loop, i.e., a triple pattern with the same subject

and object), while 41 BGPs collapse to a triangle (as per the example shown in Figure 1).

Organic queries Next we extract our taxonomy from the set of all 872,555 organic queries

in the chosen interval, which contain 2,198,557 BGPs. Table 1b presents the overall statistics

regarding the number of motifs and the largest equivalence class size at each step. Of interest is

that the number of motifs is generally much higher than in the robotic case, indicating more

diverse query shapes. This is to not surprising as one would expect robotic traffic to account

for more regular (e.g., parameterised) queries when compared with queries created by users.



As before, Table 3 presents the top 5 motifs at each step – starting from step 1 – in the organic

case. The Wikidata properties P31, P625 and P238 seen in step 1 refer to instance of, coordinate
location and IATA airport code, respectively. We see the same top motif as in the case of robotic

queries relating to Wikidata’s label service. However, we also see a number of more complex

motifs, including the fourth and fifth motif, which we suspect may be misclassified bot traffic

(the logs classify organic and robotic traffic using a number of heuristics, such as user-agent,

the volume of similar queries originating from a single source, etc. [6]). The fourth motif is

disconnected; rather than being an equi-join, the motif represents a join based on geographic

distance, where the join condition does not appear in the BGP. The fifth motif notably includes

an edge with a variable, seemingly trying to retrieve all facts about airports. Looking at steps 2, 3

and 4, we see that although organic motifs share a lot in common with their robotic counterparts,

they tend to be more complex, with the fifth motif in these steps having a join on three edges.

At step 5, we again see the return of disconnected patterns resulting from the aforementioned

geographic queries, with a large part of the fourth motif (209,322 of 211,016 instances) being

accounted for by the fourth motif at step 1. At step 6, we again found an edge motif, a self-loop

motif, and a triangle motif, but unlike in the robotic case, we also found a pentagon motif with

a small number of instances (25 BGPs).

5. Conclusions

We believe that better tools are needed in order to summarise, structure, explore and under-

stand the contents of large SPARQL logs. In this work, we have proposed a taxonomy for

understanding the structure (specifically) of BGPs found in such a log. We proposed a sequence

of generalisation steps that, when applied to BGPs, yield increasingly high-level motifs by

incrementally abstracting away details from the BGP, generating a hierarchical taxonomy over

those BGPs. Extracting the taxonomy for a sample of Wikidata queries, we gain some interest-

ing insights into the most common motifs occurring in BGPs relating to frequently accessed

predicates, frequent join types, the rarity of acyclic queries, the presence of disconnected graph

patterns, and some potentially misclassified organic queries.

For future work, we would like to develop a user interface that allows for exploring the

taxonomy of a given SPARQL query log: starting from step 6 (the highest level), the user is

presented the motifs and the number of associated BGPs in descending order; upon clicking a

motif, the sub-motifs at the lower level are presented in the same order. This would allow the

user to start from a high-level view of the BGPs of the log, and “drill-down” on specific motifs

for more details. We are also interested in exploring different sequences of generalisation steps

that might yield more interesting insights. Another direction would be to study how different

generalisation steps preserve different graph metrics; a key metric along these lines would be

(hyper-)treewidth, which captures how “tree-like” a query is and predicts the complexity of

evaluating the query [3].
3

Finally, it would be of interest to explore query features beyond

simple BGPs; this seems non-trivial as it introduces many alternatives for generalisation steps,

but could help to glean insights into how operators like paths, union, optionals, etc., are used.

3

We note that step 6, which computes the core of the undirected graph, does not preserve treewidth; for example, it

can collapse cycles of even length to a single edge, cycles of odd length or even cliques to a self-loop, etc.



Table 3
Top 5 motifs for organic queries after each step

Step
Rank of motif per number of occurrences

1 2 3 4 5

1

wb:language
rdfs:labelwdt:P31

wdt:P625

wb:radiuswb:center

wb:distance

wdt:P625
wdt:P238wdt:P31

388,836 239,752 215,078 209,322 209,084
(17.69%) (10.90%) (9.78%) (9.52%) (9.51%)

2

c c c1 c2 c c1 c2

586,021 413,058 250,833 221,809 209,457
(26.65%) (18.79%) (11.41%) (10.09%) (9.53%)

3 590,948 413,175 251,147 237,488 209,474
(26.88%) (18.79%) (11.42%) (10.80%) (9.53%)

4 590,948 413,175 286,165 251,254 209,514
(26.88%) (18.79%) (13.02%) (11.43%) (9.53%)

5 1,290,288 347,870 238,128 211,016 38,859
(58.69%) (15.82%) (10.83%) (9.60%) (1.77%)

6 2,197,940 404 188 25
—

(99.97%) (0.02%) (0.01%) (0.001%)



Acknowledgments

This work was supported by Fondecyt No. 1221926 and by ANID – Millennium Science Initiative

Program – Code ICN17_002.

References

[1] Ali, W., Saleem, M., Yao, B., Hogan, A., Ngomo, A.N.: A survey of RDF stores

& SPARQL engines for querying knowledge graphs. VLDB J. 31(3), 1–26 (2022).

https://doi.org/10.1007/s00778-021-00711-3

[2] Angles, R., Aranda, C.B., Hogan, A., Rojas, C., Vrgoc, D.: WDBench: A Wikidata Graph

Query Benchmark. In: The Semantic Web - ISWC 2022 - 21st International Semantic Web

Conference, Virtual Event, October 23-27, 2022, Proceedings. Lecture Notes in Computer

Science, vol. 13489, pp. 714–731. Springer (2022). https://doi.org/10.1007/978-3-031-19433-

7_41

[3] Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query logs. VLDB

J. 29(2-3), 655–679 (2020). https://doi.org/10.1007/s00778-019-00558-9

[4] Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C Recom-

mendation (Mar 2013), http://www.w3.org/TR/sparql11-query/

[5] Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: Algo-

rithms for leaning and labelling blank nodes. ACM TOW 11(4), 22:1–22:62 (2017).

https://doi.org/10.1145/3068333

[6] Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the Most Out of

Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph. In: The Semantic

Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA,

October 8-12, 2018, Proceedings, Part II. pp. 376–394 (2018). https://doi.org/10.1007/978-3-

030-00668-6_23

[7] Martens, W.: Towards Theory for Real-World Data. In: PODS ’22: International Conference

on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. pp. 261–276. ACM

(2022). https://doi.org/10.1145/3517804.3526066

[8] Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-aware, workload-adaptive

SPARQL query caching. In: ACM SIGMOD International Conference on Management of

Data. pp. 1777–1792. ACM (2015). https://doi.org/10.1145/2723372.2723714

[9] Rietveld, L., Hoekstra, R.: Man vs. machine: Differences in SPARQL queries. In: Proceedings

of the 4th USEWOD Workshop on Usage Analysis and the Web of of Data, ESWC (2014)

[10] Salas, J., Hogan, A.: Semantics and canonicalisation of SPARQL 1.1. Semantic Web 13(5),

829–893 (2022). https://doi.org/10.3233/SW-212871

[11] Saleem, M., Mehmood, Q., Ngomo, A.N.: FEASIBLE: A feature-based SPARQL bench-

mark generation framework. In: The Semantic Web - ISWC 2015 - 14th Interna-

tional Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceed-

ings, Part I. Lecture Notes in Computer Science, vol. 9366, pp. 52–69. Springer (2015).

https://doi.org/10.1007/978-3-319-25007-6_4

[12] Stadler, C., Saleem, M., Mehmood, Q., Buil-Aranda, C., Dumontier, M., Hogan, A., Ngomo,

http://www.w3.org/TR/sparql11-query/


A.C.N.: LSQ 2.0: A Linked Dataset of SPARQL Query Logs. Semantic Web Journal (2023),

(to appear)

[13] Stegemann, T., Ziegler, J.: Pattern-Based Analysis of SPARQL Queries from the LSQ

Dataset. In: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks

co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria,

October 23rd - to - 25th, 2017. CEUR Workshop Proceedings, vol. 1963. CEUR-WS.org

(2017)

[14] Vandenbussche, P., Umbrich, J., Matteis, L., Hogan, A., Aranda, C.B.: SPAR-

QLES: monitoring public SPARQL endpoints. Semantic Web 8(6), 1049–1065 (2017).

https://doi.org/10.3233/SW-170254

[15] Williams, G.T., Weaver, J.: Enabling fine-grained HTTP caching of SPARQL query re-

sults. In: The Semantic Web - ISWC 2011 - 10th International Semantic Web Confer-

ence, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. pp. 762–777 (2011).

https://doi.org/10.1007/978-3-642-25073-6_48

[16] Zhang, X., Wang, M., Saleem, M., Ngomo, A.N., Qi, G., Wang, H.: Revealing secrets in

SPARQL session level. In: International Semantic Web Conference (ISWC). LNCS, vol.

12506, pp. 672–690. Springer (2020). https://doi.org/10.1007/978-3-030-62419-4_38

[17] Zhang, X., Wang, M., Zhao, B., Liu, R., Zhang, J., Yang, H.: Characterizing Robotic and

Organic Query in SPARQL Search Sessions. In: Web and Big Data - 4th International

Joint Conference, APWeb-WAIM 2020, Tianjin, China, September 18-20, 2020, Proceed-

ings, Part I. Lecture Notes in Computer Science, vol. 12317, pp. 270–285. Springer (2020).

https://doi.org/10.1007/978-3-030-60259-8_21


	1 Introduction
	2 Related Work
	3 A Taxonomy of Basic Graph Pattern Motifs
	4 An Analysis of Wikidata's BGPs
	5 Conclusions

