
Versioned Queries over RDF Archives:
All You Need is SPARQL?

Ignacio Cuevas and Aidan Hogan

Department of Computer Science, University of Chile & IMFD Chile

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Abstract. We explore solutions for representing archives of versioned
RDF data using the SPARQL standard and off-the-shelf engines. We
consider six representations of RDF archives based on named graphs,
and describe how input queries can be automatically rewritten to return
solutions for a particular version, or solutions that change between ver-
sions. We evaluate these alternatives over an archive of 8 weekly versions
of Wikidata and 146 queries using Virtuoso as the SPARQL engine.

1 Introduction

A key aspect of the Web is its dynamic nature, where documents are frequently
updated, deleted and added. Likewise when we speak of the Semantic Web, it is
important to consider that sources may be dynamic and RDF datasets are sub-
ject to change [11]. It is in this context that various works have looked at version-
ing in the context of RDF/SPARQL [25,23,7,8,12], with recent works proposing
RDF archives [5,3,2,6,20] that manage RDF graphs and their historical changes,
allowing for querying across different versions of the graph. Within these works,
a variety of specialised indexing techniques [3,2,20], query languages [23] and
benchmarks [13,6] have been proposed, developed and evaluated. While these
represent important advances, many such works propose custom SPARQL ex-
tensions, indexes, engines, etc., creating a barrier for adoption.

In fact, versioned queries as proposed in the literature [5] can be supported
using off-the-shelf SPARQL engines with years of development, optimisation,
and deployment. SPARQL named graphs can, for example, be used to track
different versions of individual graphs. However, as Fernandez at al. [6] note,
the approach of using pure SPARQL would “typically render rather inefficient
SPARQL queries”. This raises a question: how inefficient will such queries be? If
a pure SPARQL solution could be found with reasonable performance, existing
SPARQL engines could be used to host and query RDF archives.

In this paper, we present preliminary empirical results addressing this re-
search question. Specifically we look at six representations of RDF archives us-
ing named graphs and propose query rewriting mechanisms for them. We then
evaluate and compare these representations for an RDF archive of 8 versions of
Wikidata [26]. Our experiments compare the sizes of the indexes generated, the
time taken for indexing, and the relative costs of query evaluation.



2

2 Related Work

Various temporal extensions for RDF have been proposed in literature based
on annotations [9,19,29]. Proposed temporal extensions for SPARQL include τ -
SPARQL [23], T-SPARQL [7], SPARQL-ST [17], SPARQLT [27], etc. Related to
temporality, a number of systems support versioning for RDF, including SemVer-
sion [25], POI [24], x-RDF-3x [14], R43ples [8], Dydra [1] and Ostrich [21].

More recently RDF archives (of historical RDF data) have been gaining
attention. Fernandez et al. [5] survey the theme, discussing the types of queries
that can be run on such archives. Cerdeira-Pena et al. [3], Zaniolo et al. [27] and
Taelman et al. [20] propose compressed indexes for RDF archives, while Khurana
and Deshpande [12] propose indexes for historical graph data. Bahri et al. [2]
use Apache Spark to manage RDF archives in a distributed setting. Benchmarks
have also been proposed for RDF archives, including the BEnchmark of RDF
ARchives (BEAR) [6], and the Semantic Publishing Benchmark (SPB) [15].

The past years have seen many developments for managing and querying tem-
poral, versioned or historical RDF data. But most of these approaches propose
specialised languages, implementations, etc., creating an obstacle for adoption.
A number of authors note that one can manage and query RDF archives using
vanilla SPARQL, though it may lead to complex or inefficient queries [23,6]. Re-
cently SPARQL has been used to host and query the edit history of Wikidata,
but only one representation is explored [22]. This paper describes preliminary
experiments to gain insights into the efficiency of off-the-shelf SPARQL engines
for hosting RDF archives using different types of representations.

3 Preliminaries

RDF triples are composed of three sets of terms: IRIs (I), literals (L) and blank
nodes (B). We do not consider blank nodes in this work as they complicate the
detection of changes [28]. An RDF triple (s, p, o) ∈ I × I × (I ∪ L) consists of
a subject s, predicate p and object o. An RDF graph G is a set of triples. An
RDF archive is a tuple of RDF graphs G = (G1, . . . , Gn).

A triple pattern t := (s, p, o) ∈ (I∪V)×(I∪V)×(I∪L∪V) is an RDF triple
that permits variables from V to appear in any position. We denote by vars(t)
the variables of t. A solution is a partial mapping µ : V → I ∪ L. We denote
by dom(µ) the domain of µ, i.e., the set of variables for which µ is defined. We
say that two solutions µ1, µ2 are compatible, denoted µ1 ∼ µ2, if and only if
µ1(v) = µ2(v) for all v ∈ dom(µ1) ∩ dom(µ2). We denote by µ(t) the image of
t under µ, replacing each variable v ∈ dom(µ) ∩ vars(t) by µ(v) in t. We denote
by t(G) := {µ | µ(t) ⊆ G and dom(µ) = vars(t)} the evaluation of t over G.

SPARQL queries are based on triple patterns and a number of relational
operators. Similar to Pérez et al. [16], we define an abstract syntax for a subset
of SPARQL of pertinence to this paper as follows. A triple pattern t is a graph
pattern. Furthermore, if P and Q are graph patterns, and V ⊂ V is a set of



3

[P andQ](G) :=P (G) on Q(G) M1 onM2 := {µ1 ∪ µ2 | µ1 ∈M1, µ2 ∈M2, µ1 ∼ µ2}
[P unionQ](G) :=P (G) ∪Q(G) M1 ∪M2 := {µ | µ ∈M1 or µ ∈M2}
[P minusQ](G) :=P (G) \Q(G) M1 \M2 := {µ1 ∈M1 | @µ2 ∈M2 : µ1 ∼ µ2}

Fig. 1. Semantics for query operators where M , M1 and M2 denote sets of solutions

variables, then [P andQ], [P unionQ] and [P minusQ] are graph patterns. We
define the semantics of these graph patterns in Figure 1.1

In this paper, we rely on SPARQL datasets to represent RDF archives. A
SPARQL dataset D := {G, (x1, G1), . . . (xn, Gn)} consists of a default (RDF)
graph G and a set of named graphs of the form (xi, Gi) where xi ∈ I, Gi is an
RDF graph, and xi 6= xj for 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j. We may represent D
as a set of quads of the form (G×{∗})∪ (G1×{x1})∪ . . .∪ (Gn×{xn}), where
∗ /∈ I ∪ L ∪V is a special symbol denoting the default graph.2 Different named
graphs can be queried using a GRAPH operator, creating quad patterns. A quad
pattern q = (s, p, o, g) ∈ (I∪V)×(I∪V)×(I∪L∪V)×(I∪{∗}) extends a triple
pattern with a fourth element that may be an IRI or *. Its evaluation is analogous
to that of a triple pattern: q(G) := {µ | µ(q) ⊆ G and dom(µ) = vars(q)}.
Following the SPARQL standard [10], we translate a triple pattern (s, p, o) to a
quad pattern (s, p, o, ∗) evaluated only on the default graph. The semantics of
the operators defined in Table 1 then remain unchanged simply allowing P and
Q to now also represent quad patterns, considered to be (named) graph patterns.

SPARQL provides two operators to initialise a SPARQL dataset: FROM and
FROM NAMED. We combine both for brevity into one operator. A graph pattern P
is considered to be a query. Likewise if P is a graph pattern, and M and N are
sets of IRIs, then fromM,NP is also a query. If (xi, Gi) ∈ D let D(xi) = Gi;
otherwise if no graph is named xi in D, let D(xi) = {}. The evaluation of
fromM,NP on a dataset D is defined as fromM,NP (D) := P (DM,N ), where
the query dataset DM,N := (∪m∈MD(m) × {∗}) ∪ (∪n∈ND(n) × n) is formed
from a default graph containing the union3 of graphs with a name m ∈M , and
all named graphs in D with a name n ∈ N . We will be able to use these operators
to define query datasets that capture specific versions in an RDF archive.

4 Versioned Data

Our general approach is to represent an RDF archive as a SPARQL dataset
D but there are multiple representations by which this can be achieved, each
with its own strength and weaknesses. We propose six different representations
falling into three different categories as discussed by various authors (e.g., [24,5]):
Independent Copies (IC ), Change-Based (CB) and Timestamp-Based (TB).

1 A basic graph pattern {t1, . . . tn} can be represented as [[t1 and . . .]and tn].
2 We thus assume a quad store, and disallow empty named graphs.
3 Since we do not allow blank nodes, a union or RDF merge is equivalent.



4

Independent Copies (IC): A natural representation is to store an RDF Archive
G = (G1, . . . , Gn) as a SPARQL dataset D = {(x1, G1), . . . , (xn, Gn)}, where
x1, . . . , xn are IRIs that identify the version. This will result in relatively simple
(and thus likely efficient) rewritten queries, but can be expected to occupy a lot
of space, particularly where few triples change from version to version.

Change-Based (CB): The core idea of CB representations is to store only triples
that change from a given reference version. Along these lines, in the following
we denote by ∆j

i := Gi \Gj the triples in version i not in version j. We consider
four CB representations based on four transformations of G = (G1, . . . , Gn):

Gn1 := (G1,∆
2
1,∆

1
2, . . . ,∆

n
1 ,∆

1
n) Gi = (G1 ∪∆1

i ) \∆i
1 for 1 < i ≤ n

Gnn−1 := (G1,∆
2
1,∆

1
2, . . . ,∆

n
n−1,∆

n−1
n ) Gi = (Gi−1 ∪∆i−1

i ) \∆i
i−1 for 1 < i ≤ n

G1n := (Gn,∆
n−1
n ,∆n

n−1, . . . ,∆
1
n,∆

n
1 ) Gi = (Gn ∪∆n

i ) \∆i
n for 1 ≤ i < n

Gn−1
n := (Gn,∆

n−1
n ,∆n

n−1, . . . ,∆
1
2,∆

2
1) Gi = (Gi+1 ∪∆i+1

i ) \∆i
i+1 for 1 ≤ i < n

As can be seen for the definitions of Gi, these transformations are lossless: we
can retrieve any version of the graph from any such transformation. The first two
transformations start with the earliest version as a base. The first encodes deltas
always with respect to the first version. The second encodes deltas with respect to
the previous version. The latter two transformations start with the latest version.
The third encodes deltas with respect to the latest version. The forth encodes
deltas with respect to the subsequent version. Letting H = (H1, . . . ,Hn) such
that Hi = Gn−i+1 (1 ≤ i ≤ n), i.e., such that H “reverses” G, we remark that
Gn1 = H1

n and Gnn−1 = Hn−1
n . Each such transformation can then be represented

as a SPARQL dataset with 2n− 1 named graphs.
In terms of space we expect Gnn−1 and Gn−1n to be the most efficient as they

always encode deltas from a neighbouring version. However, in terms of query
rewriting, we expect Gn1 and G1n to be more efficient as they do not require a
recursive construction of all intermediate versions towards the base version. In
terms of indexing a new version, we expect Gn1 followed by Gnn−1 to be most
efficient as they require only computing the most recent deltas; we expect G1n,
followed by Gn−1n , to be much more expensive, requiring a recompute of all deltas.
On the other hand, G1n and Gn−1n should be advantageous for queries over more
recent versions, and in particular over the most recent version (a common case).

These four representations are analogous to differential backups, incremental
backups, reverse-differential backups, and reverse-incremental backups.

Timestamp-Based (TB): The intuition of the TB representation is to associate
each triple with the versions in which it is contained. Along these lines, we denote
by G(s, p, o) := {i | (s, p, o) ∈ Gi for 1 ≤ i ≤ n} the versions containing (s, p, o).4

Let N := {N | ∃(s, p, o) ∈ Gi : G(s, p, o) = N, 1 ≤ i ≤ n} denote the family of
sets of versions associated with some triple in (s, p, o). We can then represent
the RDF archive with a named graph for each N ∈ N . However, the number
of named graphs can reach 2n (or the number of unique triples in G). Another

4 The definition G : I× I× (I ∪ L)→ 2{1,...,n} [6] is analogous to G = (G1, . . . , Gn).



5

option is create a named graph for intervals [5]. More specifically, a triple (s, p, o)
is added to an interval [i, j] (for 1 ≤ i ≤ j ≤ n) if and only if (s, p, o) ∈ Gk for
i ≤ k ≤ j and either i = 1 or (s, p, o) /∈ Gi−1 and j = n or (s, p, o) /∈ Gj+1; in
simpler terms, [i, j] is a maximal contiguous interval of versions in which (s, p, o)
appears (omitting empty intervals). The upper bound is now n(n+ 1)/2 named
graphs, but triples may appear in multiple named graphs for different intervals.

In general, we expect the space to be similar to Gnn−1 and Gn−1n ; in other
words, quite good. However, as the number of versions n grows, O(n2) interval
graphs need to be unioned in the worst-case to materialise a particular version;
CB representations require processing O(1) (in the case of Gn1 and G1n) or O(n)
(in the case of Gnn−1 and Gn−1n ) named graphs to materialise a particular version.

Notation: We denote IC by i; differential, incremental, reverse-differential and
reverse-incremental CB by c+

d , c+
i , c−d and c−i , resp.; and interval TB by t.

5 Versioned Queries

Given a SPARQL query Q over an RDF graph, we now describe automatic
rewritings of Q to generate solutions for different versions. We first focus on
rewritings of triple patterns and then generalise. We assume that version pa-
rameters are given via HTTP rather than extending the SPARQL syntax. For
reasons of space we rather present examples in online material [4].

5.1 Single-Version Queries

A single version query returns Q(Gv) for a specified version v. Our overall strat-
egy is to use FROM to construct the graph of the version where possible, as is the
case for all versions in i and t; for G1 in c+

d , c+
i ; and for Gn in c−d , c−i . Otherwise

we rewrite each individual triple pattern appearing in Q in order to ensure that
it generates the same solutions as it would if evaluated over the graph of the
selected version. We now provide more details for each representation

Independent Copies (IC) For i we rewrite Q to from{v},{}Q, where v is the
IRI that names the graph for version v

Change-Based (CB) Recalling the observation that forwards and reverse CB
representations are analogous, for brevity we define the rewriting for the forwards
direction (c+

d , c+
i ) only; the reverse direction (c−d , c−i ) follows naturally.

For the differential representation, we load the base version and the posi-
tive delta into the default graph and, for each triple pattern, we subtract the
negative delta which is queried using a quad pattern. Thus for c+

d we rewrite
Q to from{1,v1},{1v}Q′, where 1, v1, 1v indicate the names of G1, ∆1

v and ∆v
1,

respectively; and Q′ replaces each triple pattern (s, p, o) ∈ Q with the named
graph pattern [(s, p, o, ∗)minus (s, p, o, 1v)].

Unfortunately the incremental rewriting is more complex. A first idea would
be to take the union of G1 and all positive deltas ∆1

2, . . . ,∆
v−1
v and then sub-

tract the (union of the) negative deltas ∆2
1, . . . ,∆

v
v−1; unfortunately this would



6

overlook triples that were removed from a version 1 < u < v but were added
back in a later version u < u′ ≤ v (and were not removed again in a ver-
sion u′ < u′′ ≤ v). Hence a recursive rewriting appears to be necessary. Let
Q1 := from{1},{}Q; then Q2 := from{1},{12,21}Q′1, where Q1 is the result
of replacing each triple pattern (s, p, o) in Q1 by the named graph pattern
P2 := [[(s, p, o, ∗)union (s, p, o, 21)]minus (s, p, o, 12)]. We can then apply this
rewriting recursively: Qi := from{1},{12,...,(i-1)i,21,...,i(i-1)}Q′i−1, where Q′i−1 re-
places each named graph pattern Pi−1 appearing in Qi−1 with the recursive
pattern Pi := [[Pi−1 union (s, p, o, i(i-1))]minus (s, p, o, (i-1)i)].

This rewriting leads to complex queries. We thus optimise using additional
features of SPARQL. To sketch the idea, our goal is then to make sure that each
triple pattern only matches triples that appear in a base version and were not
removed, or that appear in a positive delta ∆i

j such that 1 < i < j ≤ v and

do not appear in a (later) negative delta ∆l
k for j ≤ k < l ≤ v. In practice,

for each delta ∆i
j stored as a named graph ji, in offline processing, we index

meta-data of the form (ji, ver, j, $), and (ji, type, pos, $) in the case that i < j
or (ji, type, neg, $) in the case that j < i ($ ∈ I is a reserved name for the
meta-data graph). We can then check the aforementioned condition by using
aggregation to find the maximum version of a negative delta less than or equals
v in which the triple pattern matches, then filtering the base version or any
positive delta earlier than this maximum version. While the resulting query is
still quite complex, we found it to be more practical than the recursive rewriting.

Timestamp-Based (TB) Let i:j denote the name of the graph for the interval
of versions [i, j]. We rewrite Q to the query from{I},{}Q, where I is the set of
IRIs naming intervals in which v is contained; formally: I := {i:j | i ≤ v ≤ j}.

5.2 Delta-Version Queries

Given a query Q, a control version u and a target version v, delta-version queries
give solutions in Q(Gv)\Q(Gu). The general strategy for rewriting is to construct
a query [Qv minusQu] where Qv and Qu are the respective single-version queries.

5.3 Other SPARQL Features

In the SPARQL algebra, only the evaluation of triple patterns and property paths
(regular expressions that match arbitrary length paths in the graph) directly
accept the graph as input. Hence, given a SPARQL query Q (over a default
graph), if we can individually rewrite each triple pattern and (property) path
pattern of Q to generate solutions for Gv, then the rewritten query Q′ will
generate precisely the solutions for Gv. We previously described this process
for triple patterns. However, in SPARQL we cannot always express a property
path over multiple named graphs in the query dataset. For example, consider
a property path :y+ indicating a path of one or more predicates :y, a positive
integer K ≥ 1, and two named graphs (n1, {(c2k−2, :y, c2k−1) | 1 ≤ k ≤ K})
and (n2, {(c2k−1, :y, c2k) | 1 ≤ k ≤ K}) such that there is path for :y+ of length



7

2K (edges) that “alternates” between both named graphs. A GRAPH clause with
a variable would evaluate this path on each graph separately (we cannot bind
the graph variable to two graph names in a single solution). Though we can use
FROM over n1 and n2 to form a default graph for evaluating :a+, we can only
do this once per query. We can rather use a join of 2K GRAPH clauses, but K is
bounded by the data, not the query (nor the number of versions). Thus while we
support property paths for single-version queries on i and t, and delta-version
queries on i, we do not know how to support them in the other cases.

6 Experiments

We now perform experiments to address the following three research questions
(Q1) Which of the six representations allow for better compression, more effi-
cient indexing, and more efficient updates of a new version? (Q2) How do the
query runtimes of compressed representations (CB, TB) compare with indexing
complete versions (IC )? (Q3) Which representation works best overall?

Setting We address these questions for a Wikidata archive of 8 weekly truthy
versions from 2017-08-09 with 1.506 billion triples, to 2017-09-27 with 1.924
billion triples. The RDF archive consists of 13.477 billion triple–version pairs.
Each week 25–93 million triples are added, while 4–6 million triples are removed.
We take Wikidata’s example queries, defined by users5, and translate Wikidata-
specific features (e.g., the label service) to standard SPARQL. We further filter
queries that feature federation to other endpoints, property paths (not supported
by all representations), and qualifiers (not in truthy versions). The result is a test
set of 146 SPARQL queries. We take Virtuoso as our SPARQL implementation.
Runtimes are averaged over three runs. Query timeouts were set to 5 minutes.
The machine used has 120GB of RAM and a standard SATA hard-disk.

Indexing We first look at the results of total index sizes for each representation.
In Figure 2 we show the index sizes (GB) for each representation, the time taken
(min.) to bulk load all versions in the representation, and the time taken (min.)
to update a seven-version archive with the eighth version. We see that i has the
largest index sizes, followed by c+

d and c−d , then t, and finally c+
i and c−i . The

bulk load times correlate with index size, with i (thus) being by far the slowest.
We see a similar trend in version updates, except that c−d is far slower than the
other alternatives (even i) as the entire archive must be built from scratch.

Single version queries We apply the rewriting of our 146 SPARQL queries for
each of our six representations in order to retrieve results for version 1, 5 and 8.
We show the results as box-plots with log y-axis in Figure 3 (with the timeout
as the maximum). Median times were generally in the range of 100–1000 ms,
though 1–20 queries timed out in each experiment, affecting the mean (shown
as a diamond). In terms of mean and median runtimes, i performs the best,
with c+

d , c−d and t also performing competitively across the different versions.

5
https://www.wikidata.org/wiki/Wikidata:SPARQL query service/queries/examples

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples


8

i c+
d

c+
i

c−
d

c−
i

t

0

40

80

120

160

200
164

90

69

98

74 79

Representation

In
d
ex

S
iz
e
(G

B
)

i c+
d

c+
i

c−
d

c−
i

t

0

500

1,000

1,500

2,000

2,500
2,091

610
440

736

479 449

Representation

T
im

e
(m

in
.)

i c+
d

c+
i

c−
d

c−
i

t

0

200

400

600

800

1,000

261

51 37

796

196
150

Representation

T
im

e
(m

in
.)

Fig. 2. Indexing details including size (left), bulk load (mid) and version update (right)

V1 V5 V8
100
101
102
103103
104
105

T
im

e
(m

s)

i c+
d c+

i c−
d c−

i t

Fig. 3. Single version queries

V1–2 V4–5 V7–8
100
101
102
103103
104
105

T
im

e
(m

s)

i c+
d c+

i c−
d c−

i t

Fig. 4. Delta version queries

Conversely, c+
i and c−i perform poorly relative to the other options (except c−i

in the case of version 8). Contrasting query times with index sizes, we note a
clear time–space trade-off, where the largest index performs best, the smallest
perform worst, and those with intermediate space perform middlingly.

Delta version queries Next we rewrite our 146 SPARQL queries in order to
retrieve delta results between versions 1–2, 4–5 and 7–8 from each of our six
representations. We again show the results as box-plots with log y-axis in Fig-
ure 4 (with the timeout as the maximum). When compared with single version
queries, we see an increase in time, where the median runtimes of even the best
performing representations approach or exceed 1000 ms more often. This time
the best performance is offered by t, followed by i, c+

i and c−i . Conversely, c+
d

and c−d perform very poorly. Of note is that incremental builds perform better
than differential builds; we believe that this is due to the ability to cache smaller
graphs, most of which are used to generate results for both versions.

7 Conclusion

We now reflect back on our research questions: (Q1) In terms of indexing space
and time, incremental builds with an initial base version (c+

d ) are best. (Q2) In
general the uncompressed IC representation (i) offers the best query runtimes,
but interval TB (t) is quite competitive, and even outperforms IC for delta-
version queries. (Q3) Rather than there being an overall winner, we note a
time–space tradeoff, where less compact representations have faster queries and



9

more compact representations have slower queries. Interval TB (t) arguably
strikes the best balance for space and time, though this may not hold with more
versions, particularly in RDF archives where triples are often added or removed
multiple times, as a quadratic number of intervals may need to be accessed.

For future work, it would be of interest to run experiments for other SPARQL
engines and other RDF archive benchmarks. Also it would be interesting to
run more diverse types of versioned queries, such as delta versions with larger
gaps, queries returning versions as solutions, etc.; a related direction would be
to consider operators from temporal logics [18]. There are also open questions
relating to more optimal/concise query rewritings, and support for paths.

In conclusion: for those who wish to host RDF archives, with different ver-
sions of an RDF graph, is SPARQL all you need? Specialised languages and
systems can offer more features and consume less time and space. But with some
caveats, our results suggest that query rewriting over an off-the-shelf SPARQL
engine can be a solid (easy-to-deploy) option for such scenarios.

Online material Please see [4] for code and queries.

Acknowledgements This work was funded by Fondecyt Grant No. 1181896 and
ANID Millennium Science Initiative Program ICN17 002.

References

1. J. Anderson and A. Bendiken. Transaction-time queries in dydra. In Managing
the Evolution and Preservation of the Data Web (MEPDaW), pages 11–19, 2016.

2. A. Bahri, M. Laajimi, and N. Y. Ayadi. Distributed RDF Archives Querying with
Spark. In European Semantic Web Conference (ESWC), pages 451–465, 2018.

3. A. Cerdeira-Pena, A. Fariña, J. D. Fernández, and M. A. Mart́ınez-Prieto. Self-
indexing RDF archives. In Data Compression Conference (DCC), pages 526–535,
2016.

4. I. Cuevas. Online Material, 2020. https://github.com/HunterNacho/sparql-versioning/.
5. J. D. Fernández, A. Polleres, and J. Umbrich. Towards Efficient Archiving of

Dynamic Linked Open Data. In DIACHRON Managing the Evolution and Preser-
vation of the Data Web, pages 34–49, 2015.

6. J. D. Fernández, J. Umbrich, A. Polleres, and M. Knuth. Evaluating query and
storage strategies for RDF archives. Semantic Web, 10(2):247–291, 2019.

7. F. Grandi. T-SPARQL: A tsql2-like temporal query language for RDF. In Local
Proceedings of the Fourteenth East-European Conference on Advances in Databases
and Information Systems, pages 21–30, 2010.

8. M. Graube, S. Hensel, and L. Urbas. R43ples: Revisions for Triples - An Approach
for Version Control in the Semantic Web. In Linked Data Quality (LDQ), 2014.

9. C. Gutierrez, C. A. Hurtado, and A. A. Vaisman. Introducing time into RDF.
IEEE Trans. Knowl. Data Eng., 19(2):207–218, 2007.

10. S. Harris, A. Seaborne, and E. Prud’hommeaux, editors. SPARQL 1.1 Query
Language. 21 March 2013. Available at http://www.w3.org/TR/sparql11-query/.

11. T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing
linked data dynamics. In The Semantic Web: Semantics and Big Data, 10th In-
ternational Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Pro-
ceedings, pages 213–227, 2013.

https://github.com/HunterNacho/sparql-versioning/


10

12. U. Khurana and A. Deshpande. Storing and Analyzing Historical Graph Data at
Scale. In International Conference on Extending Database Technology (EDBT),
pages 65–76, 2016.

13. V. Kotsev, N. Minadakis, V. Papakonstantinou, O. Erling, I. Fundulaki, and
A. Kiryakov. Benchmarking RDF Query Engines: The LDBC Semantic Publishing
Benchmark. In Benchmarking Linked Data (BLINK), 2016.

14. T. Neumann and G. Weikum. x-RDF-3X: Fast Querying, High Update Rates, and
Consistency for RDF Databases. Proc. VLDB Endow., 3(1):256–263, 2010.

15. V. Papakonstantinou, I. Fundulaki, and G. Flouris. Assessing Linked Data Ver-
sioning Systems: The Semantic Publishing Versioning Benchmark. In Scalable
Semantic Web Knowledge Base Systems (SSWS), pages 45–60, 2018.

16. J. Pérez, M. Arenas, and C. Gutiérrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

17. M. Perry, P. Jain, and A. P. Sheth. SPARQL-ST: extending SPARQL to sup-
port spatiotemporal queries. In Geospatial Semantics and the Semantic Web -
Foundations, Algorithms, and Applications, pages 61–86, 2011.

18. A. Pnueli. The temporal logic of programs. In Foundations of Computer Science
(FOCS), pages 46–57. IEEE Computer Society, 1977.

19. A. Pugliese, O. Udrea, and V. S. Subrahmanian. Scaling RDF with time. In World
Wide Web Conference (WWW), pages 605–614, 2008.

20. R. Taelman, M. V. Sande, J. V. Herwegen, E. Mannens, and R. Verborgh. Triple
storage for random-access versioned querying of RDF archives. J. Web Semant.,
54:4–28, 2019.

21. R. Taelman, M. V. Sande, and R. Verborgh. OSTRICH: Versioned Random-Access
Triple Store. In Comp. of The Web Conference, pages 127–130, 2018.

22. T. P. Tanon and F. M. Suchanek. Querying the Edit History of Wikidata. In
ESWC Satellite Events, pages 161–166. Springer, 2019.

23. J. Tappolet and A. Bernstein. Applied temporal RDF: efficient temporal querying
of RDF data with SPARQL. In Extended Semantic Web Conference (ESWC),
pages 308–322, 2009.

24. Y. Tzitzikas, Y. Theoharis, and D. Andreou. On Storage Policies for Semantic Web
Repositories That Support Versioning. In European Semantic Web Conference
(ESWC), volume 5021, pages 705–719, 2008.

25. M. Völkel and T. Groza. SemVersion: An RDF-based ontology versioning system.
In IADIS Conference: WWW/Internet, volume 2006, 2006.

26. D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Commun. ACM, 57(10):78–85, 2014.

27. C. Zaniolo, S. Gao, M. Atzori, M. Chen, and J. Gu. User-friendly temporal queries
on historical knowledge bases. Inf. Comput., 259(3):444–459, 2018.

28. D. Zeginis, Y. Tzitzikas, and V. Christophides. On computing deltas of RDF/S
knowledge bases. TWEB, 5(3):14:1–14:36, 2011.

29. A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general framework for
representing, reasoning and querying with annotated Semantic Web data. J. Web
Sem., 11:72–95, 2012.


	Versioned Queries over RDF Archives:All You Need is SPARQL?

