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Abstract. A number of interfaces have been proposed in recent years
to help users build SPARQL queries, including textual editors with syn-
tax highlighting and error correction, and visual editors that allow for
drawing graph patterns using node and edge components. A common
feature supported by such systems is autocompletion, which offers users
suggestions for terms to insert into a query, potentially restricted by a
keyword prefix. However, current systems either return irrelevant terms
that will generate empty results, or return relevant terms but may time
out while generating suggestions for complex queries. We propose an au-
tocompletion technique based on a graph summary that aims to strike a
balance by over-approximating relevant results in an efficient manner.

1 Introduction

The recent popularisation of knowledge graphs has introduced new users to
the concept of representing and querying data through a graph abstraction [16].
Although a number of languages are now available for querying graphs – such
as Cypher [11], Gremlin [23], SPARQL [15], etc. – users may not be familiar
with such languages. Knowledge graphs are often used to represent diverse data
that do not necessarily follow a schema [16], which makes querying them more
difficult, even for users who are expert on the supported query language.

Prominent open knowledge graphs like Wikidata [27] already receive in the
order of millions of queries per day from users over the Web [18]. A range of tools
and techniques have thus been proposed to assist users to formulate queries over
knowledge graphs more easily [24,1,17,9,7,19,2,2,13,22,3,8,18,25,26]. Among such
systems, autocompletion is a key feature to improve usability. This feature allows
users to select a term (often a property or a class) from a list of options, possi-
bly matching a prefix that they have typed. Ideally, autocompletion should be
efficient, enabling interactive query-building; and should return relevant results,
avoiding terms that make no sense in the context of the current partial query.

We provide a real-world example of autocompletion in Figure 1 taken from
the query editor provided by the Wikidata Query Service [18]. The user has cre-
ated a variable ?x and defined it to be an instance of (wdt:P31) film (wd:Q11424).
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Fig. 1. Autocompletion for movie properties on the Wikidata Query Service’s query
editor (https://query.wikidata.org) based on the “gen” prefix

Next they wish to query for the genres of the film, and use the autocompletion
feature typing “gen”. However, the first suggestion is sex or gender (wdt:P21),
which does not make much sense in the context of the current query. The second
suggestion, genre (wdt:P136), is the one being sought.1

To avoid generating irrelevant suggestions, some query builder systems, such
as Gosparqled [6] and RDF Explorer [26], only suggest terms that will gener-
ate non-empty results. In the context of the previous example, this is done by
evaluating the following intermediate SPARQL query against the endpoint:

SELECT DISTINCT ?p WHERE { ?x wdt:P31 wd:Q11424 . ?x ?p ?o . }

in order to generate terms to replace ?p that will ensure non-empty results.
However, this query is quite expensive to evaluate, as it will typically involve
checking all instances of film in the knowledge graph, and extracting the unique
set of properties used to describe them. Theoretically speaking, the problem of
knowing whether or not a particular term is an answer to such a query (a query
with projection and a single Basic Graph Pattern (BGP)) over a knowledge-
graph is NP-complete [20]. In practice, such intermediate queries may lead to
timeouts, meaning that no suggestions are generated. Even in cases where results
are successfully returned, these intermediate queries generate load on the server.

There thus exists a fundamental trade-off between the efficiency and rele-
vance goals for SPARQL autocompletion. In this context, we find two types of
techniques for autocompletion used in practice: those that return suggestions
independently of the query context, which are efficient, but may generate ir-
relevant results (as used by the Wikidata Query Service), and those that only
return suggestions leading to non-empty results, which are costly, but only gener-
ate relevant results (as used by RDF Explorer). A number of works have further
explored techniques that try to strike a better balance between efficiency and rel-

1 Prefixes used herein can be found at http://prefix.cc.
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evance [7,6,12,4]. However, these approaches address autocompletion by trying
to solve a problem that remains NP-complete in the general case.

For autocompletion, we believe that efficiency should take priority, and that
relevance is a secondary-goal so long as all relevant suggestions are returned.
In other words, we believe that it is key for the autocompletion technique to
return results in a predictable (ideally sub-second) amount of time, no matter
what the current query, and that it should return all relevant options, but it may
return some irrelevant results as a trade-off (ideally as few as possible). We thus
propose a tractable technique that filters suggestions according to the current
query context, but that may over-approximate the set of relevant suggestions.

This paper then discusses our ongoing work on Fast Approximate Auto-
completion for SPARQL (FAAS), along with some preliminary experiments on
Wikidata. Section 2 describes related works on the topics of query builders and
autocompletion for RDF/SPARQL. Section 3 introduces preliminaries and nota-
tion for RDF/SPARQL. Section 4 describes the novel technique we propose for
autocompletion. Section 5 presents some experiments to evaluate our technique
with respect to efficiency and relevance over Wikidata. Section 6 concludes the
paper with a discussion of strengths, limitations, and future work.

2 Related Work

A range of tools, techniques and interfaces have been proposed in recent years
to help users to interact with RDF datasets, including search engines, faceted
browsing systems, graph profilers, visualisation tools, question answering ser-
vices, query-by example systems, query editors, query builders, and more be-
sides [10,5]. The most expressive tools are those that allow for constructing
SPARQL queries, namely query editors and query builders. Query editors of-
fer text- and form-based interfaces with aids for writing SPARQL queries (see,
e.g., Figure 1); such systems include include Konduit [1], SPARQL Assist [19],
Assisted SPARQL Editor [7], QUaTRO2 [2], Gosparqled [6], YASGUI [22], and
the Wikidata Query Service [18]. Query builders allow for constructing a query
through a visual abstraction, e.g., drawing a graph pattern; such systems in-
clude NIGHTLIGHT [24], RDF-GL [17], Smeagol [9], QueryVOWL [14], Op-
tiqueVQS [25], SPARQLing [3], ViziQuer [8], and RDF Explorer [26].

Many such tools rely on generating suggestions through autocompletion mech-
anisms to assist the user in selecting terms of interest. Such a feature is par-
ticularly useful in the context of language-agnostic knowledge graphs, such as
Wikidata, where numeric identifiers are used for entities and properties (e.g.,
using wd:Q11424 for film). Of these systems, Konduit [1], Smeagol [9], Assisted
SPARQL Editor [7], SPARQL Assist [19], QUaTRO2 [2], QueryVOWL [14],
YASGUI [22], OptiqueVQS [25], Wikidata Query Service [18], and RDF Ex-
plorer [26] support some form of autocompletion. Of these, Smeagol [9], QUa-
TRO2 [2], Gosparqled [6] and RDF Explorer [26] avoid empty results. Assisted
SPARQL Editor [7] provides approximated suggestions.



Various works have addressed autocompletion in the context of RDF/S-
PARQL. Campinas et al. [7] use a graph summary consisting of three layers:
a dataset layer, a node collection layer, and an entity layer. Each layer is based
on a quotient graph, at the level of datasets, classes and entities. Autocompletion
is then fulfilled by translating the SPARQL query into a higher-level query over
the graph summary. Gombos and Kiss [12] present an autocompletion approach
that takes into consideration two properties: rdf:type to extract the type of en-
tity and the properties compatible with those types, and rdfs:range to extract
the possible types of the object variables. Rafes et al. [21] propose an autocom-
pletion technique for SPARQL based on patterns seen previously in other users’
queries. Bast et al. [4] recently proposed an autocompletion method based on
query templates for generating ranked suggestions of entities that may include
the context of the current query (without the triple being constructed). Given
that these queries can be expensive to compute, the authors propose optimisa-
tions based on characteristic sets and caching techniques.

The most similar approaches to that which we propose are the works by
Campinas et al. [7], Gombos and Kiss [12], and Bast et al. [4]. The main difference
between our approach and that of Campinas et al. [7] and Bast et al. [4] is that
their approaches consider evaluating the graph pattern on either a summarised
version of the graph, or using particular optimisations; as we later discuss, both
techniques are thus based on the NP-complete problem of graph homomorphism,
and thus cannot guarantee efficiency in certain cases.2 Our approach is based on a
tractable (over-approximated version of the original) problem, which offers some
theoretical guarantees of efficiency. Compared with Gombos and Kiss [12], there
are some similarities with our technique, but both approaches are fundamentally
different; for example, their approach relies on explicit rdfs:range definitions
to be provided, and is “unidirectional”, not considering domains for outgoing
properties. Our approach does not rely on such definitions being provided.

3 Preliminaries

Before presenting our technique, we first present some brief, necessary prelimi-
naries for RDF graphs and for SPARQL queries.

An RDF graph is based on three pairwise disjoint sets of RDF terms: IRIs (I),
literals (L) and blank nodes (B). An RDF triple (s, p, o) ∈ (I∪B)×I×(I∪B∪L)
is a three-tuple of RDF terms, where s is called subject, p predicate and o object.
An RDF graph G is then a finite set of RDF triples.

At the core of SPARQL queries lies the notion of a triple pattern, defined
as (s, p, o) ∈ (I ∪ B ∪ L ∪V) × (I ∪V) × (I ∪ B ∪ L ∪V), where V denotes a
set of variables disjoint from the RDF terms. Since blank nodes act as variables
and subject literals cannot match any RDF triples, we will assume a simpler
definition: (s, p, o) ∈ (I∪V)× (I∪V)× (I∪L∪V). A basic graph pattern B is
then a set of triple patterns; equivalently we can think of a basic graph pattern

2 In fact, the approach of Bast et al. [4] provides precise suggestions, and thus solves
the original problem, which is known to be intractable [20].



as an RDF graph that permits variables in any position. We denote the set of
variables appearing in a basic graph pattern B as vars(B).

The evaluation of a basic graph pattern over an RDF graph yields a set of
solution mappings. A solution mapping µ is a partial mapping V→ (I∪B∪L)
from variables to RDF terms. We denote by dom(µ) the domain of µ, which is
the set of variables for which µ is defined. We denote by µ(B) the image of B
under µ; i.e., the result of replacing every variable v ∈ dom(µ) ∩ vars(B) with
µ(v) in B. The evaluation of a basic graph pattern B on an RDF graph G is
then defined as B(G) = {µ | µ(B) ⊆ G and dom(µ) = vars(B)}; in other words,
the evaluation returns all of the solution mappings that map the variables of B
to the RDF terms of G such that the result is a sub-graph of G.

We are interested in generating suggestions for one variable at a time (what
Campinas calls the “point of focus” [6]). Thus we introduce (single-variable)
projection. Given a solution mapping µ and a variable v ∈ dom(µ), let µv denote
the solution mapping such that dom(µv) = v and µv(v) = µ(v), projecting (only)
v from µ. Given a set of solution mappings M , we define πv(M) = {µv | µ ∈M}.

4 Fast Approximate Autocompletion for SPARQL

We now present our technique for fast approximate autocompletion in the con-
text of SPARQL. We first show that autocompletion for SPARQL is a hard
problem, which conflicts with the goal of efficiency in the general case, and
motivates the need for approximate algorithms. We then introduce a relatively
simple approach that over-approximates solutions for the problem, generating
all relevant suggestions but possibly also some irrelevant suggestions.

4.1 Exact autocompletion is hard

The central problem of this paper is as follows:

Problem: Exact autocompletion
Input: BGP B, variable v ∈ vars(B), RDF graph G
Output: πv(B(G))

We begin by briefly showing that this problem cannot be solved efficiently. In
particular, we show that the problem – a restricted case of the result presented
by Pérez et al. [20] where one variable is projected – remains NP-hard.

Proposition 1. Exact autocomplete is NP-hard.

Proof. We present a polynomial-time reduction from the NP-complete problem
of deciding graph homomorphism for directed graphs to the problem of exact
autocompletion, which implies that the latter is NP-hard. Given the two directed
graphs D1 = (V1, E1) and D2 = (V2, E2), our goal is to decide whether or not
there is a homomorphism from D1 to D2 (NP-complete). Define the basic graph
pattern B = {(ν(u), p, ν(v)) | (u, v) ∈ E1} where ν : V1 → V is an injective



mapping from the vertices of V1 to variables and p ∈ I is an arbitrary IRI.
Define the RDF graph G = {(ι(u), p, ι(v)) | (u, v) ∈ E2} where ι : V2 → I
is an injective mapping from the vertices of V2 to IRIs. Taking any variable
v ∈ vars(B), then there exists a homomorphism from D1 to D2 if and only if
πv(B(G)) is non-empty. This concludes the proof. ut

In the interest of efficiency, we thus propose to compute approximate solu-
tions for the autocompletion problem.

4.2 Over-approximating autocompletions

In our approach, we propose to ensure that all relevant suggestions be returned,
but allow non-relevant suggestions be returned as well in order to trade relevance
for efficiency. Specifically, we thus address the following problem:

Problem: Over-approximated autocompletion
Input: BGP B, variable v ∈ vars(B), RDF graph G
Output: M such that πv(B(G)) ⊆M

Of course, there are some trivial solutions for M , such as mapping v to every
RDF term in G. However, our goal will be to try to (efficiently) minimise the set
of solutions in M \ πv(B(G)), i.e., the false positives that lead to empty results.
These are the solutions µ ∈M such that µ(B)(G) = ∅.

To further reduce and minimise the irrelevant results, we include some prac-
tical features, whereby:

1. A user can specify a prefix, such as “gen”, that will be matched with key-
words associated with suggestions (e.g., though a label or alias property).

2. Ranking is used to prioritise the suggestion of candidates.

We will now describe the core of the technique we propose, which we call FAAS.

4.3 FAAS: core technique

From the RDF graph, we begin by extracting a summary to optimise suggestions
generated by autocompletion. We assume here the definition of a type property
IRI, which may be rdf:type or, in the case of Wikidata, wdt:P31 (instance of).
We will denote this IRI by the symbol ε for brevity.

Definition 1 (Autocompletion graph summary). Let G be an RDF graph,
p be an IRI, c and x be IRIs or blank nodes and y be an IRI, literal or blank
node. We define the autocompletion graph summary as a tuple of six mappings:

class(x) = {c | (x, ε, c) ∈ G}
instance(c) = {x | (x, ε, c) ∈ G}

incoming(c) = {p | ∃x, y : {(x, p, y), (y, ε, c)} ⊆ G}
outgoing(c) = {p | ∃x, y : {(x, p, y), (x, ε, c)} ⊆ G}
domain(p) = {c | ∃x, y : {(x, p, y), (x, ε, c)} ⊆ G}

range(p) = {c | ∃x, y : {(x, p, y), (y, ε, c)} ⊆ G}



?v1 ?v2?v3

?v4

:director:director

?v5

:duration

?v6

:alumnus :alumnus

:University

rdf:type

Autocompletion Graph Summary G (sample)

domain(:alumnus) = {:Person}
range(:alumnus) = {:School, :University}

domain(:director) = {:Company, :Film, :Series}
range(:director) = {:Person}

domain(:duration) = {:Event, :Film, :Series}
range(:duration) = {xsd:duration}

domain(:type) = {rdfs:Resource}
range(:type) = {rdfs:Class}

. . . = . . .
incoming(:Person) = {:director, :parent, :sibling}
outgoing(:Person) = {:alumnus, :parent, :sibling}

. . . = . . .
instance(:University) = {:Aalborg, . . . , :Zurich}

. . . = . . .
class(:University) = {rdfs:Class}

. . . = . . .

Fig. 2. Autocompletion example for BGP (left) and graph summary (right)

With respect to the previous definitions, we may note that c ∈ class(x) if
and only if x ∈ instance(c), that p ∈ incoming(c) if and only if c ∈ domain(p),
and that p ∈ outgoing(c) if and only if c ∈ range(p). Thus the summary contains
some redundancy. Defining the mappings in this way, we then index on the
argument, e.g., to quickly find instances by class, to find classes by instance,
etc. If we wish to support autocompletion for datatype literals, we can consider
adding a triple (l, ε, d) to denote that literal l is of type d. Furthermore, to ensure
that all relevant results are returned, we assume that all nodes are declared to
be an instance of some general class (e.g., owl:Thing, rdfs:Resource), or that
all nodes can be returned if needed (akin to emulating a top-level class).

Given a basic graph pattern B, and a variable v ∈ vars(B), the next step is
to generate autocompleted suggestions for v using the summary of G. Let:

s(B) = {x | ∃p, y : (x, p, y) ∈ B}
p(B) = {p | ∃x, y : (x, p, y) ∈ B}
o(B) = {y | ∃x, p : (x, p, y) ∈ B}

denote the subject, predicate and object terms in B, respectively.
Our first goal is to generate candidate types for the nodes (subjects and

objects) and then candidates for variable predicates in B. We begin with the
example shown in Figure 2 before defining the algorithm. We will denote by B
the basic graph pattern on the left, and by G the autocompletion graph summary
on the right. We begin by inferring the types of nodes, denoted with types[]. For
constant nodes, we take the types from G.instance(·). For variables nodes, we
intersect the types given in the basic graph pattern (if any), the domains of
outgoing properties (if any), and the ranges of incoming properties (if any).



– types[?v1] = G.domain(:alumus) ∩G.range(:director) = {:Person}
– types[?v2] = G.domain(:alumus) ∩G.range(:director) = {:Person}
– types[?v4] = G.domain(:director)∩G.domain(:duration) = {:Film, :Series}
– types[?v5] = G.range(:duration) = {xsd:duration}
– types[?v6] = {:University} ∩G.range(:alumus) = {:University}
– types[:University] = G.class(:University) = {rdfs:Class}

Next we compute candidate properties for predicates in the basic graph pat-
tern, denoted properties[]. In the case that a predicate is an IRI, its only candi-
date will be itself. Otherwise, it will be the intersection of all the incoming and
outgoing properties for the subject and object classes; in case a subject/object
has multiple classes as candidates, we take the union of their incoming/outgoing
properties before intersecting as the subject/object may be any of the classes.
This gives us the following candidates for predicates:

– properties[:alumnus] = {:alumnus}
– . . .
– properties[?v3] =

⋃
c∈types[?v1] G.incoming(c) ∩

⋃
c∈types[?v2] G.outgoing(c)

= {:director, :parent, :sibling} ∩ {:alumnus, :parent, :sibling}
= {:parent, :sibling}.

We detail the process in Algorithm 1, which uses the following convention:
we use {?} as syntax to represent the set of all classes/properties in a graph, and
define the special intersection ∩? such that A∩? {?} = A and {?} ∩? {?} = {?}.
This avoids having to store all classes/properties in the initial set of candidates.
The algorithm first establishes a set of candidate classes (denoted as the array
types[]) for each node, and then a set of candidate values (denoted as the array
properties[]) for each predicate, based on the information available in the basic
graph pattern B and the graph summary G. Note the following:

1. If a node is a constant, or is given multiple specific types in the basic graph
pattern, then it would suffice to select one type as the set of candidates is
considered a disjunction. However, to avoid non-determinism and simplify
the algorithm, we add all known classes to the candidate types for the node.

2. The algorithm is potentially recursive in that we could use the candidate
predicates to refine the possible types for nodes, which could then refine the
set of predicates, and so on. We opt for a single pass to ensure efficiency.

Once we have these candidates, we can then generate suggestions for auto-
completion on a variable v ∈ vars(B) based on the candidate types or properties
returned by Algorithm 1. If the variable is in a predicate position, v ∈ p(B),
then we simply return properties[v] (if properties[v] = {?}, then all predicates
in G are suggested). Otherwise, we return the union of G.instance(c) for all
c ∈ types[x] (if types[v] = {?}, then all nodes in G are suggested).3

3 This implies that if a variable appears in a predicate and subject or object position,
we will generate suggestions based on it appearing in the predicate position, as this
will generate the most selective results.



We remark that the overall process is tractable: given an input RDF graph G
with n triples, then G can be computed in time O(n) by creating six hashtables
with O(n) keys (assuming ideal hashing; note that the number of unique terms in
G is at most 3n, i.e., O(n)). Similarly, let m denote the number of triple patterns
in B. Then we can use two hashtables with O(m) keys to store the candidates
for each term in B, where each term has at most O(n) candidates. The candi-
dates can themselves be stored as (nested) hashtables. Thus the intersections
of candidate sets for each term takes O(n) at each step, and there are at most
three intersections (in the case of classes), giving us a complexity in the order
of O(mn) for type inference and autocompletion.4 The key to tractability here
is avoiding a recursive process when inferring classes and properties; otherwise
we would be solving the basic graph pattern on a quotient graph, which is still
NP-hard following the same reasoning as seen for Proposition 1.

We further remark that the technique returns all relevant results (and pos-
sibly more) due to the fact that the graph summary is computed from the data
(rather than, e.g., relying on potentially incomplete or inaccurate rdfs:domain
and rdfs:range definitions), that empty suggestions are returned only if the
query yields no results, that classes for node variables are only ruled out if they
have an incompatible incoming/outgoing property on an incident edge, and that
candidate properties for predicate variables are only ruled out if they have an
incident node whose possible classes are all incompatible with the domain/range
of that property. However, we may additionally return irrelevant results.

4.4 Our technique: in practice

The procedure proposed in the previous section has some considerable practical
weaknesses. For example, consider the query:

SELECT * WHERE { ?s ?p ?o . }

Autocompletions for ?s or ?o will return all nodes in the graph, while auto-
completions for ?p will return all predicates. In fact, such a query would not
be uncommon in query editor and builder interfaces as a starting point for con-
structing a query. Hence we support two common heuristics used by systems
that offer autocompletion: filtering by prefix/keyword, and ranking.

First, we allow users to type a prefix or keyword that will be matched against
the text for a node (attached by label, alias or comment properties, as configured
by the administrator); e.g., a user seeking autocompletions for ?s may type “aa”
and be suggested :Aalborg, :Aardvark, etc.; similarly if they seek autocomple-
tions for ?p with prefix “d”, they will be suggested :director, :duration, etc.
In cases where a fixed set of candidates can be found, prefixes can be combined
with the previously discussed criteria to generate relevant suggestions.

Note that the user need not actually type a prefix, or may enter a prefix
that still generates thousands of results. Thus, we also provide a ranking of

4 In practice, one could expect better performance, taking time O(n) to compute the
autocompletion graph summary, and time O(m+n) to compute candidates assuming
that the number of classes and properties, in particular, is constant.



nodes and properties to prioritise results. For this, we currently apply PageRank
on the directed graph induced by the RDF graph to rank node suggestions,
and we count the number of triples in which predicates appear to rank property
suggestions. Instead of generating all results, we rather paginate the suggestions.

4.5 Prototype implementation

We have developed a prototype implementation in C#. The implementation
takes as input a set of type properties, and a set of textual properties used
for prefix and keyword matching. It then uses custom scripts to extract the
autocompletion graph summary (using external sorting rather than hashing,
with O(n log n) performance but fewer random accesses on disk). The mappings
are implemented as two inverted indexes in Lucene separated by nodes and
properties (some elements may be indexed in both). The inverted indexes further
include text indexing on the textual properties, which supports wildcards (e.g.,
“aa*” for prefix search), and ranking boosts based on PageRank and property
frequency, respectively. Boosts are multiplied by TF-IDF-based relevance scores
in case that a prefix or keyword is provided by the user.

4.6 Limitations

There are a number of limitations of our proposed technique and current pro-
totype. First, we focus on autocompletion within a given basic graph pattern.
Though we can support other query features such as UNION, GROUP BY, etc., by
focusing on generating autocompletions for inner basic graph patterns, features
such as property paths are not directly supportable in this manner. Second,
our autocompletion framework depends on an index over a graph summary,
meaning that it cannot be directly applied over an endpoint; while specialised
indexes help improve performance, such an approach generates an additional
cost in terms of downloading the dump and processing it locally, and introduces
the question of keeping the graph summary up-to-date with respect to remote
changes, which we currently do not consider. Third, our approach may generate
irrelevant suggestions that lead to empty results, and may even be slower in
some cases (in particular, involving selective queries) than computing the exact
results for a variable over the remote endpoint; for this reason, we propose to
evaluate autocompletions locally and over the endpoint in parallel, and in case
the endpoint returns within a fixed amount of time, to use the exact results,
otherwise deferring to the approximate result.

5 Experiments

We now present the results of some initial experiments for our autocomple-
tion prototype. In particular, we present experiments for autocompletions over
Wikidata. The baseline that we currently consider involves computing the exact



results for a variable on the public Wikidata Query Service (WDQS). We con-
sider two main aspects: efficiency and relevance. For efficiency, we will measure
response times in comparison to the baseline. For relevance, we will measure
the precision of the suggestions generated as the ratio of results returned by our
system that are also returned by the endpoint.

Our experiments are based on the May 23rd 2020 truthy dump of Wikidata,
which we preprocessed to filter non-English labels, descriptions, etc., leaving a
dataset of 1.098 billion triples. Experiments were run on a personal computer
with an i7-4600M CPU @ 2.9 GHz and 16 GB of RAM, running on Windows 10.
In terms of preprocessing, computing the ranking, extracting the autocompletion
graph summary and indexing all of the data took 75 hours. The index size was
9.7 GB, describing 9.7 million nodes and 7,559 properties.

In terms of experiments, to the best of our knowledge there is no existing
benchmark for autocompletion. Hence we created a benchmark considering four
query templates, as shown in the following:

1 SELECT DISTINCT ?p WHERE { ?v1 :p ?v2 . ?v1 ?q ?v3 }

2 SELECT DISTINCT ?p WHERE { ?v1 :p ?v2 . ?v2 ?q ?v3 }

3 SELECT DISTINCT ?p WHERE { ?v1 :p ?v2 . ?v3 ?q ?v1 }

4 SELECT DISTINCT ?p WHERE { ?v1 :p ?v2 . ?v3 ?q ?v2 }

Here :p represents a constant property that we select based on a weighted sam-
pling of 67 distinct properties in Wikidata, taking a mix of high and low values
for the number of triples, number of domain classes, and the number of range
classes associated with the property. These queries exhibit common types of
joins, as are often encountered in intermediate queries under construction; they
are also the types of queries that the endpoint struggles with in practice. Given
that the WDQS endpoint frequently times out for node suggestions, where our
local index rather paginates ranked results, to enable a fairer comparison we
focus in these initial experiments on autocompleting ?q.

We present the results in Figure 3, comparing the times for FAAS (our pro-
posal) and WDQS, with the x-axis representing the percentile, and the y-axis
representing the runtime, considering 67×4 = 268 queries. We see that FAAS is
in general considerably faster than WDQS. The plateau seen for WDQS refers
to queries that time out, where only 36% were processed successfully within the
timeout. Given that it is difficult to see the times for FAAS, we present the re-
sults alone in Figure 4. We see that all autocompletions were processed within 3
seconds, while 35% of the queries were processed within 2 seconds, and 8% were
processed within 1 second. While ideally the runtimes would be a bit lower (i.e.,
consistently sub-second), we consider that waiting up to 3 seconds is acceptable
(particularly considering the alternative of generating no suggestions), and could
be lowered with additional optimisations in future.

A key difference between WDQS and FAAS that enables the superior perfor-
mance of the latter is that FAAS over-approximates suggestions while WDQS
computes exact suggestions. For the queries that returned results from WDQS,



Fig. 3. Times: FAAS vs. WDQS Fig. 4. Times: FAAS only

we thus measured the precision, where we found that across all such queries, the
minimum precision was 0.04, the median precision was 0.21, and the maximum
precision was 0.59. Thus in a typical case, we could expect roughly 1/5 of the
suggestions returned by FAAS to return non-empty results when replacing the
variable. We also measured the recall, which ranged from 0.92 to 1.00, with a
median of 1.00; since we over-approximate results, we expect the recall to always
be 1.00, where we confirmed that the cases with imperfect recall were caused by
updates to the remote WDQS after the dump we use was published.

6 Conclusions

In this paper, we have described our ongoing work on a tractable technique
for autocompletion of SPARQL query variables, which can be useful for query
editors and query builders. Tractability is enabled by over-approximating the
suggestions that lead to non-empty results. We have implemented a prototype
based on Lucene, where initial experiments show promising results in terms of
efficiency (all autocompletions are computed in less than 3 seconds, even without
prefix or keyword search), at the cost of precision (0.21 in the median case, i.e.,
we return about 5 times more results than are actually relevant).

Key challenges for future work involve improving efficiency further (to get
below 1 second, at least) while further increasing precision. Balancing the two ap-
pears tricky: for example, precision could be improved by adding a limited depth
of recursion to Algorithm 1, but may lead to slower times. Another promising
direction might be to look into ranking results by relevance to the query, which
would reduce the impact of low precision on usability if the first results that
appear will be relevant: though we do consider some ranking mechanisms, we do
not consider the context of the query for ranking, which could be explored in fu-
ture work. For instance, our algorithm will still return sex or gender (wdt:P21)
as a suggestion for the motivating scenario posed in Figure 1: at the time of
writing, four movies in Wikidata (presumably due to noise) have this property
defined; in future, it could be ranked low based on being defined for few movies.



Another alternative would be to look at other variants of graph summary, for
example, to include statistics that weight relations (e.g., to indicate how many
instances of a class use a “domain” property, which might be helpful for query-
specific ranking, as mentioned before), or to model direct relationships between
properties that co-occur on nodes (e.g., to support additional features, such as
property paths). Another challenge is keeping the graph summary up-to-date
with respect to the knowledge graph, where computing the summary on a dump
currently takes several days, and where we missed relevant suggestions due to
changes in the live query service since the summary was computed; a possible
solution would be to look into incremental updates of the summary.

We further plan to experiment with additional datasets, queries and baselines
and have integrated our technique with RDF Explorer [26] for usability testing.

Please see https://github.com/gabrieldelaparra/SPARQLforHumans for code
and additional material, including the queries used for experiments.
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Algorithm 1: Type and property inference

Input: Basic graph pattern B, graph summary G
Output: Candidate types for s(B) ∪ o(B), Candidate properties for p(B)
initialise types[]; properties[];
for x ∈ s(B) ∪ o(B) do

if x ∈ I ∪ L then
types[x]← G.class(x);

else
Cx ← {?};
if ∃c ∈ I : (x, ε, c) ∈ B then

Cx ← {c′ ∈ I | (x, ε, c′) ∈ B};
end
for (x, p, o) ∈ B : p ∈ I do

Cx ← Cx ∩? G.domain(p);
end
for (s, p, x) ∈ B : p ∈ I do

Cx ← Cx ∩? G.range(p);
end
types[x]← Cx;

end

end
for p ∈ p(B) do

if p ∈ I then
properties[p]← {p};

else
Cp ← {?};
for (s, p, o) ∈ B : types[s] 6= {?} do

Cp ← Cp ∩?

⋃
c∈types[s] G.outgoing(c);

end
for (s, p, o) ∈ B : types[o] 6= {?} do

Cp ← Cp ∩?

⋃
c∈types[o] G.incoming(c);

end
properties[p]← Cp;

end

end
return types[], properties[]
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