
Worst-Case-Optimal Similarity Joins on Graph Databases
Diego Arroyuelo

DCC, Escuela de Ingeniería, Pontificia

Universidad Católica & IMFD

Santiago, Chile

diego.arroyuelo@uc.cl

Benjamin Bustos

Department of Computer Science,

University of Chile & IMFD

Santiago, Chile

bebustos@dcc.uchile.cl

Adrián Gómez-Brandón

Universidade da Coruña

& CITIC & IMFD

A Coruña, Spain

adrian.gbrandon@udc.es

Aidan Hogan

Department of Computer Science,

University of Chile & IMFD

Santiago, Chile

ahogan@dcc.uchile.cl

Gonzalo Navarro

Department of Computer Science,

University of Chile & IMFD

Santiago, Chile

gnavarro@dcc.uchile.cl

Juan Reutter

Department of Computer Science,

PUC & IMFD

Santiago, Chile

jreutter@ing.puc.cl

ABSTRACT
We extend the concept of worst-case optimal equijoins in graph

databases to the case where some nodes are required to be within

the 𝑘-nearest neighbors (𝑘-NN) of others under some similarity

function. We model the problem by superimposing the database

graph with the 𝑘-NN graph and show that a variant of Leapfrog

TrieJoin (LTJ) implemented over a compact data structure called

the Ring can be seamlessly extended to integrate similarity clauses

with the equijoins in the LTJ query process, retaining worst-case

optimality inmany relevant cases. Our experiments on a benchmark

that combines Wikidata and IMGpedia show that our enhanced LTJ

algorithm outperforms by a considerable margin a baseline that

first applies classic LTJ and then completes the query by applying

the similarity predicates. The difference is more pronounced on

queries where the similarity clauses are more densely connected to

the query, becoming of an order of magnitude in some cases.

CCS CONCEPTS
• Theory of computation → Database query processing and
optimization (theory); Data structures and algorithms for
data management.

KEYWORDS
Worst-case optimal joins; Leapfrog Triejoin; graph patterns; graph

databases; graph indexing; similarity joins; nearest-neighbor graphs

ACM Reference Format:
Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan,

Gonzalo Navarro, and Juan Reutter. 2018. Worst-Case-Optimal Similarity

Joins on Graph Databases. In Proceedings of ACM SIGMOD/PODS Interna-
tional Conference on Management of Data (SIGMOD ’24). ACM, New York,

NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’24, June 9–15, 2024, Santiago, Chile
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph databases [5] are enjoying a resurgence, seen in the emer-

gence of novel graph query languages [19] and new commercial

graph database systems [8, 11]. Open knowledge graphs, such as

Wikidata [54], receive millions of SPARQL queries per day [38].

These developments call for (1) time- and space-efficient techniques

to evaluate queries over graph databases [40], and (2) new features

that enhance the expressivity of graph query languages [4].

Regarding efficiency,worst-case optimal (wco) join algorithms [44]

have provided notable reductions in runtimes for evaluating com-

plex graph patterns compared to traditional methods [3, 6, 7, 25,

33, 34, 39, 45]. While such algorithms typically require extra index

permutations, and thus more space when compared to, e.g., pair-

wise joins, recent works address this limitation through on-the-fly

indexing [24], and compact data structures [6, 7].

Regarding expressivity, wco algorithms havemainly been studied

in the context of evaluating equijoins. Their suitability for other

types of joins is not yet well understood. Wco guarantees have been

proven for relaxed joins [44], whereby not all of the tuples of the

join query need to be satisfied. Such guarantees have also been

studied for top-𝑘 queries [50], where only the top 𝑘 results in some

ordering are returned. Though interesting variants, both relaxed

and top-𝑘 queries are still based on equijoins. Similar guarantees

have recently been studied in the context of theta-joins [51], which

allow inequalities, non-equalities, etc., in join conditions. It remains

of interest to study wco guarantees for other types of join.

Our goal in this paper is to push the envelope for wco join al-

gorithms by studying their applicability for similarity joins, which
relax equijoins by matching elements of the database that are “sim-

ilar” (according to some predefined criteria), rather than precisely

equal. Two variants of similarity joins are commonly considered:

range-based similarity joins (or 𝜖-joins) match pairs of elements

within a certain distance, while 𝑘–nearest neighbor joins (or 𝑘-NN
joins) match, for each element in the left relation, its 𝑘 most similar

elements in the right relation [48]. Such joins have been widely

studied since the mid 1990’s [56], having been folklore for longer,

with works citing applications for multimedia databases [56], time-

series databases [56], DNA databases [56], spatial databases [31],

text mining [15], clustering [31], record linkage [13, 15], and more

besides. Supporting similarity joins could then open up a wide

range of such applications for graph databases [23].

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

Contributions: Our specific contributions are as follows: (i) we
present a compact data structure and novel algorithms for evaluat-

ing 𝑘-NN similarity joins over graph databases; (ii) we prove the

worst-case optimality of these techniques under certain conditions

of (a)cyclicity; (iii) we create a pseudo-real-world benchmark for

this task that combines graphs with multimedia (image) content;

(iv) we show that our algorithm clearly outperforms a baseline

using wco join algorithms that postpone similarity joins until last.

Motivating examples. Graph patterns, the most typical queries

on graph databases, look for partially instantiated subgraphs in the

labeled graph. For instance, Twitter searches for diamond patterns

in order to make recommendations about whom to follow [29, 39]:

if (𝑥, Follows, 𝑦) denotes a graph edge 𝑥
Follows−−−−−−→ 𝑦, then

(𝑥 ,Follows,𝑦), (𝑥 ,Follows,𝑧), (𝑦,Follows,𝑧), (𝑦,Follows,𝑤), (𝑧,Follows,𝑤),
might indicate that user𝑤 is a good recommendation for user 𝑥 to

follow, based on the topology of its social network. However, one

would also want to take advantage of certain similarities among

users in order to improve suggestions. For instance, in the previous

example it might be the case that user 𝑦 does not necessarily follow

user 𝑧, but they are similar in some sense (for example, they have

similar interests, they produce similar posts about certain topics, or

they live in the same region or country). The same happens with

users 𝑧 and𝑤 . Hence, one could issue a query like

(𝑥, Follows, 𝑦), (𝑥, Follows, 𝑧), 𝑦 ∼ 𝑧, (𝑦, Follows,𝑤), 𝑧 ∼ 𝑤,
where ∼ denotes similarity among the involved variables. This

would allow us recommend 𝑥 to follow 𝑤 not only based on the

graph topology, but also considering certain similarities. Indeed,

based on the same query we might also want to suggest 𝑦 to follow

𝑧 (and vice versa), and even 𝑧 to follow𝑤 .

Beyond this example, combining similarity joins with graph

patterns can be useful in diverse domains, for instance, to find:

(1) stadia of German football clubs whose geographically closest
stadium is of a team in the same league; (2) similar messages posted
by bot accounts and politicians they follow on a social network;

(3) visually similar works by Henri Matisse and works by a Cubist

compatriot. Combining criteria via multiple similarity joins, we can

find, for example: (4) pairs of songs with similar tonality and lyrics
by Asian artists, or (5) countries similar in terms of population and
area that are neighbors. Using similarity joins on distinct entities we

can find, for example, (6) pairs of stars and their orbiting exoplanets

with similar mass, resp., to a solar planet and our sun; (7) researchers
working on similar topics at geographically close institutes. Our goal
is to evaluate such queries efficiently in time and space.

Related work. Kiefer et al. [35] propose iSPARQL, which adds an

IMPRECISE clause to SPARQL that allows for specifying a similarity

join. Ferrada et al. [23] extend SPARQL with a syntax, semantics

and set of rewriting rules for similarity joins. Other works extend

graph databases with domain-specific similarity joins in the context

of query relaxation [32], record deduplication [26, 47], multimedia

databases [22], and geographic databases [10, 58], among others.

In terms of novelty, little work has been done on optimizing sim-

ilarity joins within graph patterns [23] (or indeed, in the relational

setting [48]), and no work that we are aware of has looked at wco

guarantees for join queries with similarity clauses.

2 LEAPFROG TRIEJOIN AND THE RING
2.1 Graph databases and BGP matching
We introduce key concepts and notation needed for this paper.

Definition 1. Let𝑈 be a universe of constants. A graph database

is a labeled graph 𝐺 (𝑉 , 𝐸), where 𝑉 ⊆ 𝑈 is a finite set of nodes and
𝐸 ⊆ 𝑉 ×𝑈 ×𝑉 is a finite set of labeled edges; (𝑢, 𝑝, 𝑣) ∈ 𝐸 denotes

𝑢
𝑝
→ 𝑣 . We call dom(𝐺) = {𝑢, 𝑝, 𝑣 | (𝑢, 𝑝, 𝑣) ∈ 𝐺} the subset of

𝑈 used as constants in 𝐺 and 𝐷 = |dom(𝐺) |. Furthermore, we call
𝑛 = |𝑉 | the number of nodes in 𝐺 and 𝑁 = |𝐸 | the number of edges.

To simplify, we assume𝑈 = [1 . . 𝐷]; note 𝑛 ≤ 𝐷 ≤ 3𝑁 , 𝑁 ≤ 𝐷3
.

A graph database𝐺 is often used to search for patterns of interest,

that is, subgraphs of 𝐺 that are homomorphic to a basic graph

pattern 𝑄 . We define a basic graph pattern formally as follows.

Definition 2. Let 𝐺 (𝑉 , 𝐸) be a graph database, 𝑈 be its uni-
verse of constants, and𝑊 be a universe of variables disjoint from
𝑈 . A basic graph pattern (BGP) 𝑄 is a set of triple patterns (𝑥,𝑦, 𝑧),
where 𝑥,𝑦, 𝑧 ∈ 𝑈 ∪𝑊 . The output 𝑄 (𝐺) of the BGP is the set of all
assignments 𝐴 : 𝑊𝑄 → 𝑈 , where𝑊𝑄 ⊆ 𝑊 are the variables that
appear in 𝑄 , such that for each triple pattern (𝑥,𝑦, 𝑧) ∈ 𝑄 , it holds
that (𝐴′ (𝑥), 𝐴′ (𝑦), 𝐴′ (𝑧)) ∈ 𝐺 , where 𝐴′ (𝑥) = 𝑥 for all 𝑥 ∈ 𝑈 and
𝐴′ (𝑥) = 𝐴(𝑥) for all 𝑥 ∈𝑊𝑄 .

Given a BGP𝑄 over a graph database𝐺 , the task is to enumerate

𝑄 (𝐺). A BGP𝑄 is equivalent to a join query, as follows. Each triple

pattern in𝑄 is an atomic query over𝐺 , equivalent to equality-based

selections on a single ternary relation. Then, a BGP corresponds to

a conjunctive query (i.e., a join query plus simple selections) over

the relational representation of the graph.

The AGM bound [9] establishes the maximum output size of a

join query free of self joins. This bound can also be applied to BGPs,

which feature self joins, constants in𝑈 , and multiple occurrences

of a variable in a triple pattern. The idea is to regard each triple

pattern as a relation formed by the triples matching its constants

[33]. Thus, the AGM bound of 𝑄 over a graph database instance

𝐺 , denoted 𝑄∗
, is the maximum size 𝑄 (𝐺 ′) could have over any

database instance 𝐺 ′
of size |𝐺 ′ | ≤ |𝐺 |, where | · | denotes the

number of edges of a graph. A join algorithm is worst-case optimal
(wco) if it has a running time in �̃� (𝑄∗), where �̃� ignores polylogs

and data-independent factors. Atserias et al. [9] proved that for

queries as simple as {(𝑥, 𝑝,𝑦), (𝑦, 𝑝, 𝑧), (𝑧, 𝑝, 𝑥)} (for some constant

𝑝), no classical plan involving only pair-wise joins can be wco.

2.2 Leapfrog Triejoin (LTJ)
Leapfrog Triejoin [53] (LTJ, for short) is a worst-case optimal algo-

rithm for computing natural joins in relational databases that has

been adapted for evaluating BGPs [33] as described next. Assume

that the graph database has been stored using a trie (or digital tree)

data structure, such that for each edge (𝑢, 𝑝, 𝑣) ∈ 𝐸 there is a path of

length 3 in the trie storing the values𝑢, 𝑝 , and 𝑣 , respectively. In the

RDF notation, these values are called s (subject), p (predicate), and o
(object), respectively. So, the above is called the spo trie, as tuples are

stored following that order. Indeed, for LTJ to work properly, one

needs to store 3! = 6 different tries, corresponding to the 6 different

permutations of the values s, p, and o. Now, let us consider a BGP

𝑄 = {𝑡1, . . . , 𝑡𝑞} whose set of variables is {𝑥1, . . . , 𝑥𝑣}. LTJ uses a

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

so-called variable elimination approach, carrying out 𝑣 iterations,

each handling a particular variable. This implies defining a total

order ⟨𝑥𝑖1 , . . . , 𝑥𝑖𝑣 ⟩ in which the variables will be processed.

Each triple pattern 𝑡𝑖 has an associated trie 𝜏𝑖 whose edge values

have been stored in a manner consistent with the given variable

ordering. LTJ starts at the root of every 𝜏𝑖 and descends by the

children that correspond to the constants in 𝑡𝑖 . It then proceeds to

the variable elimination phase. Let 𝑄 𝑗 ⊆ 𝑄 be the triple patterns

that contain variable 𝑥𝑖 𝑗 . Starting with the first variable in the order,

𝑥𝑖1 , LTJ finds each 𝑐1 ∈ dom(𝐺) such that for every 𝑡 ∈ 𝑄1, if 𝑥𝑖1
is replaced by 𝑐1 in 𝑡 , the evaluation of the modified triple pattern

𝑡 over 𝐺 is non-empty (i.e., there may be answers to 𝑄 where 𝑥𝑖1
is equal to 𝑐1). To find such a 𝑐1, we must intersect the children of

the current nodes in all the tries 𝜏𝑖 , for 𝑡𝑖 ∈ 𝑄1. During execution,

we keep a mapping 𝜇 that binds variables already processed. As

we find each constant 𝑐1 suitable for 𝑥𝑖1 , we set 𝜇 = {(𝑥1 := 𝑐1)}
and branch on this value 𝑐1, going down by 𝑐1 in all the tries 𝜏𝑖 , for

𝑡𝑖 ∈ 𝑄1. We now repeat the same process with 𝑄2, finding suitable

constants 𝑐2 for 𝑥𝑖2 and extending the mapping to 𝜇 = {(𝑥1 :=

𝑐1), (𝑥2 := 𝑐2)}, and so on. Once we have eliminated all variables,

𝜇 is a solution for 𝑄 (solutions can be found on each branch for

distinct values of 𝑐1, . . . , 𝑐𝑣). If for some variable 𝑥𝑖 𝑗 there is no value

𝑐 𝑗 in the intersection, the algorithm backtracks and continues with

the next value for 𝑄 𝑗−1. When the process finishes, the algorithm

has reported all the solutions for 𝑄 .

LTJ carries out the intersection at the trie nodes using the prim-

itive leap(𝜏𝑖 , 𝑐), which finds the next smallest constant 𝑐𝑖 ≥ 𝑐

within the children of the current node in trie 𝜏𝑖 ; if there is no

such value 𝑐𝑖 , leap(𝜏𝑖 , 𝑐) returns a special value⊥. Veldhuizen [53]

showed that LTJ is wco if leap() runs in polylogarithmic time.

2.3 Fundamental operations on strings
Let 𝐵 be a bit vector of length |𝐵 |. On it we define the following

operations, for 𝑏 ∈ {0, 1}: (1) rank𝑏 (𝐵, 𝑖), with 1 ≤ 𝑖 ≤ |𝐵 |, counts
the number of bits with value 𝑏 in 𝐵 [1..𝑖], and (2) select𝑏 (𝐵, 𝑗),
with 1 ≤ 𝑗 ≤ rank𝑏 (𝐵, |𝐵 |), yields the position in 𝐵 of the 𝑗th bit

with value 𝑏 from the left. These operations, as well as accessing

𝐵 [𝑖], can be supported in 𝑂 (1) time using |𝐵 | + 𝑜 (|𝐵 |) bits of space
[14, 41]. They can also be extended to a string 𝑆 [1 . . 𝑁] over an
alphabet Σ = [0, 𝐷), as rank𝑐 (𝑆, 𝑖) and select𝑐 (𝑆, 𝑗), for 𝑐 ∈ Σ.
Wavelet trees (WT, for short) are the paradigmatic data structure

supporting these operations efficiently, specifically in𝑂 (log𝐷) time

and using𝑁 log𝐷+𝑜 (𝑁 log𝐷) bits of space [28] (we use logarithms

in base 2). WTs efficiently support an extended set of operations

[42], including: (1) range_next_value(𝑆, 𝑟𝑏 , 𝑟𝑒 , 𝑐), which finds, for

𝑐 ∈ Σ, the smallest symbol 𝑐′ ≥ 𝑐 that occurs in range 𝑆 [𝑟𝑏 . . 𝑟𝑒],
in 𝑂 (log𝐷) time; and (2) range_symbols(𝑆, 𝑟𝑏 , 𝑟𝑒), which counts

the number of different values in 𝑆 [𝑟𝑏 . . 𝑟𝑒] in 𝑂 (log𝑁) time and

using 𝑂 (𝑁 log𝐷) additional bits of space.

2.4 The Ring data structure
The Ring [6] data structure supports the six orders needed by LTJ
using a single bidirectional cyclical index that uses space close to

the raw data representation (and even less in some cases), while

supporting the leap() operation needed by the algorithm.

The data structure is essentially a column store, built as follows

for a graph 𝐺 (𝑉 , 𝐸). Let 𝑇spo [1 . . 𝑁] [1 . . 3] be the table storing

the 𝑁 = |𝐸 | edges (𝑢, 𝑝, 𝑣) of the graph, sorted according to the

spo order. Let 𝐶o denote the last column of 𝑇spo, which intuitively

corresponds to the last level (i.e., the one corresponding to o) of the

trie for spo. Next, the process moves the third column to the front in

the table, making it the first column. The table is then re-sorted to

obtain table𝑇osp. Let𝐶p denote the last column of this table, which

corresponds to the last level of the trie for the order osp. Finally,

the third column in table 𝑇osp is moved to the front and the table is

re-sorted once again, obtaining table𝑇pos and column𝐶s. The Ring
index is then formed by the sequences 𝐶s, 𝐶o, and 𝐶p, which are

represented using wavelet trees, with a total space requirement of

3𝑁 log𝐷 + 𝑜 (𝑁 log𝐷) bits. It also contains arrays 𝐴 𝑗 , for each 𝐶 𝑗

with 𝑗 ∈ {s, p, o}, defined as 𝐴 𝑗 [𝑘] = |{𝑖 ∈ [1 . . 𝑁], 𝐶 𝑗 [𝑖] < 𝑘}|,
for 𝑘 = 1, . . . , 𝐷 + 1. These arrays store the cumulative number of

occurrences of the symbols of 𝑈 in 𝐶 𝑗 and are represented using

bit vectors with 3(𝑁 + 𝐷) + 𝑜 (𝑁 + 𝐷) bits. The total space is thus
close to the 3𝑁 log𝐷 bits of a plain representation of the graph 𝐺 .

By using 𝐶 𝑗 and 𝐴 𝑗 , for 𝑗 ∈ {s, p, o}, we can switch between

tables using the function 𝐹 𝑗 : [1 . . 𝑁] → [1 . . 𝑁], defined as

𝐹 𝑗 (𝑖) ≡ 𝐴 𝑗 [𝑐] + rank𝑐 (𝐶 𝑗 , 𝑖), where 𝑐 = 𝐶 𝑗 [𝑖]. So, function 𝐹o
maps a position in table 𝑇spo, using 𝐴o and 𝐶o, to the correspond-

ing one in 𝑇osp. Similarly, 𝐹p maps from 𝑇osp to 𝑇pos and 𝐹s maps

from 𝑇pos back to 𝑇spo. The mappings work in 𝑂 (log𝐷) time if we

compute rank𝑐 using the WT. We can also move in the other direc-

tion in 𝑂 (log𝐷) time using the inverse function of 𝐹 𝑗 : 𝐹
−1
𝑗

(𝑖′) ≡
select𝑐 (𝐶 𝑗 , 𝑖

′ −𝐴 𝑗 [𝑐]), where 𝑐 is such that 𝐴 𝑗 [𝑐] < 𝑖′ ≤ 𝐴 𝑗 [𝑐 + 1].
Every node 𝑣 in any of the 6 tries corresponds to a range𝐶 𝑗 [𝑏 . . 𝑒]

in some of the three columns. Consider, for example, the trie 𝑇spo,

whose leaves are enumerated in column 𝐶o. If 𝑣 is the root, then

its range is the whole 𝐶o [1 . . 𝑁]. If 𝑣 is in the first level and corre-

sponds to the subject s = 𝑥 , then its range 𝐶o [𝑏 . . 𝑒] is that of all
triples starting with 𝑥 , [𝑏 . . 𝑒] = [𝐴s [𝑥] + 1 . . 𝐴s [𝑥 + 1]]. If 𝑣 is in
the second level and corresponds to (s, p) = (𝑥,𝑦), then 𝐶o [𝑏 . . 𝑒]
is the range of the triples in𝑇spo starting with 𝑥𝑦. A leaf node denot-

ing the triple (s, p, o) = (𝑥,𝑦, 𝑧) corresponds to the single position

in 𝐶o where 𝑇spo contains 𝑥𝑦𝑧. The same holds, analogously, for

the tries 𝑇osp and 𝑇pos. The other tries can also be simulated with

ranges. Consider 𝑇sop, for example. A first-level node 𝑣 by s = 𝑥

corresponds to the same range in 𝐶o as before, but a second-level

node corresponding to (s, o) = (𝑥, 𝑧) is equivalent to (o, s) = (𝑧, 𝑥),
which is a node in 𝑇osp, and thus to a range in 𝐶p. Then, if we de-

scend from s = 𝑥 to (s, p) = (𝑥,𝑦), we restrict the range in 𝐶o, but
if we descend to (s, o) = (𝑥, 𝑧), we switch to a range in𝐶p. The new

column ranges are computed with extensions of the functions 𝐹 𝑗

and 𝐹−1
𝑗

, all in 𝑂 (log𝐷) time; see the original paper [6] for details.

Example 1. Consider the graph on the top-left of Figure 1, where
the labels indicate (c)heap or (e)xpensive travel routes from the source
to the target node. The columns 𝐶s, 𝐶p, and 𝐶o are shown on the
bottom-left; ignore the rest of the figure for now. The BGP 𝑄 =

{(𝑥, c, 𝑦), (𝑦, c, 𝑧)} looks for places (𝑦, 𝑧) we can reach from 𝑥 at low
cost with at most one stop. Both triples (𝑥, c, 𝑦) and (𝑦, c, 𝑧) have the
initial range 𝐶s [1 . . 5], corresponding to p = c. Say we first eliminate
variable 𝑦. For (𝑦, c, 𝑧), the candidate subjects {2, 3, 4} are the dis-
tinct elements in𝐶s [1 . . 5], whereas for (𝑥, c, 𝑦), the candidate objects

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

S’
1

S’
5

S’
6

S’
7

S’
2

S’
3

S’
4

4

4

6

5

1

4

2

5

c

c

c

e

c

c

e

2

2

3

3

4

7

S2

S1

7

4

5

7

4

6

5

S7

CPCS COTSPOTOSPTPOS

1

1111

11

1

11

1

1

1

1

111

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B S’

2

3

1

3

1

2

6

7

5

1

2

3

6

4

7

4

5

7

4

5

6

1

11

3

2

4

1

3

4

1

2

4

6

7

5

6

4

S

S

S

S

3

4

5

6

S

c

e

c

c

c

e

c

2

3

2

3

4

7

4

1

2

4

4

5

5

6

2

2

3

4

4

3

7

1

4

4

5

6

2

5

c

c

c

c

c

e

e

1

2

67

1

2

67

3

4 5

3

c

e

c c

c

c

4 5

e

Figure 1: A graph𝐺 and its 𝐾-NN graph with 𝐾 = 3 at its right.
Below, the Ring index of 𝐺 . On the right, the representation
of the 𝐾-NN graph using 𝑆 , 𝑆 ′, and 𝐵. The dotted lines mark
the internal divisions in each 𝑆 ′𝑥 for the different values of 𝑡 .
The grayed ranges correspond to Examples 1 and 3.

{1, 4, 5, 6} are the distinct elements in𝐶o that are mapped to𝐶s [1 . . 5]
by 𝐹−1

s
. The Ring efficiently finds the intersection {4}. We then bind

𝑦 := 4. The new range associated with (𝑦, c, 𝑧) = (4, c, 𝑧) is 𝐶o [5 . . 6]
– corresponding to (s, p) = (4, c) in 𝑇spo – whereas the one associated
with (𝑥, c, 𝑦) = (𝑥, c, 4) is𝐶s [2 . . 3] – corresponding to (p, o) = (c, 4)
in 𝑇pos. Those ranges are outlined. We continue later in Example 3.

In the Ring-supported LTJ algorithm, then, each triple pattern

of 𝑄 is associated with some range 𝐶 𝑗 [𝑏 . . 𝑒], and the intersections

of trie nodes correspond, intuitively, to finding the common values

in the ranges of all the triple patterns that share the next variable

to bind. Operation leap(), which powers the intersection, is sup-

ported in 𝑂 (log𝐷) time by using, in particular, the WT operation

range_next_value, which finds the smallest 𝑐𝑥 ≥ 𝑐 within a range

𝐶 𝑗 [𝑏 . . 𝑒]. The LTJ intersection algorithm works in time bounded

by the size of the smallest intersected range multiplied by the num-

ber of intersected ranges and by the cost of leap(), which yields

worst-case optimality. For compatibility, we state their results using

log𝑁 = Θ(log𝐷) instead of log𝐷 .

Theorem 1 ([6]). Let 𝐺 be a graph database with 𝑁 edges and 𝑄
be a BGP. Then, a representation using 3𝑁 + 𝑜 (𝑁) words of space can
compute 𝑄 (𝐺) in 𝑂 (𝑄∗ |𝑄 | log𝑁) time, where 𝑄∗ is the maximum
possible output (AGM bound) of 𝑄 on some graph of 𝑁 edges.

3 LTJ WITH SIMILARITY JOINS

3.1 Modeling similarity
Based on the observation that users struggle with distance-based

similarity given that distances – particularly in high-dimensional

abstract spaces – can be difficult to conceptualize [23, 57], we model

similarity via 𝑘-nearest neighbors, which allows us to abstract away

details of particular distance functions.

Definition 3. Let 𝑉 be a set and 𝑑 : 𝑉 ×𝑉 → R+ be a distance
function on 𝑉 . For 𝑢, 𝑣 ∈ 𝑉 and any integer 1 ≤ 𝑘 < |𝑉 |, we define
𝑘-NN(𝑢) as a set satisfying 𝑢 ∉ 𝑘-NN(𝑢), |𝑘-NN(𝑢) | = 𝑘 , and ∀𝑣 ∈
𝑘-NN(𝑢), ∀𝑣 ′ ∉ {𝑢}∪𝑘-NN(𝑢), 𝑑 (𝑢, 𝑣) ≤ 𝑑 (𝑢, 𝑣 ′). That is,𝑘-NN(𝑢)
is the set of the 𝑘 elements closest to 𝑢, with ties broken arbitrarily.

In order to have a consistent definition of 𝑘-NN for all values of

𝑘 in presence of ties, we define the concept of a 𝐾-NN graph.

Definition 4. Given an integer 1 ≤ 𝐾 < |𝑉 |, a 𝐾-NN graph of
𝑉 is a directed graph whose node set is 𝑉 and the out-neighbors of
every 𝑢 ∈ 𝑉 is a set 𝐾-NN(𝑢). We additionally regard 𝐾-NN(𝑢) as
ordered by nondecreasing distance to 𝑢, so we say that 𝐾-NN(𝑢) [𝑗]
is the 𝑗th closest element to 𝑢 and, for any 1 ≤ 𝑘 ≤ 𝐾 , we say that
𝑣 ∈ 𝑘-NN(𝑢) iff 𝑣 = 𝐾-NN(𝑢) [𝑗] for some 1 ≤ 𝑗 ≤ 𝑘 .

We consider the 𝐾-NN graph as part of the input, just like the

graph 𝐺 . Except for simple cases like, say, geographic distance,

the distance function is given by an expert on the data domain. In

some cases, the expert directly gives the 𝐾-NN graph, as it might

be easier to rank by closeness than to come up with a similar-

ity function [49]. When a similarity function is given, the 𝐾-NN

graph is computed only once, at index construction time, not for

each query. The naïve approach for building the 𝐾-NN graph takes

time Θ(𝑛2), by computing all pairwise distances between nodes in

𝑉 . Paredes et al. [46] present methods for building 𝐾-NN graphs

for general metric spaces, taking empirical times of 𝑂 (𝑛1.27) for
low-dimensional spaces and 𝑂 (𝑛1.90) for high-dimensional ones,

using 𝑂 (𝑛(𝐾 + log𝑛)) space. In the case of R𝑑 , Vaidya [52] pro-

poses an algorithm for 𝐾 = 1 that takes 𝑂 ((𝑐𝑑)𝑑𝑛 log𝑛) time, for

a constant 𝑐 [18]. Dickerson and Eppstein [20] compute the 𝐾-NN

graph in R𝑑 in 𝑂 (𝐾𝑛 + 𝑛 log𝑛) time, although they leave open the

dependence of the bound on 𝑑 . There are several algorithms for

computing approximated 𝐾-NN graphs, such as NN-Descent [21]

(arbitrary similarity measure, empirical time 𝑂 (𝑛1.14)), multiple

random divide & conquer and neighborhood propagation [55] (data

in R𝑑 , time 𝑂 (𝑑𝑛 log𝑛)), and a method based on Locality Sensitive

Hashing [59] (data in R𝑑 , time𝑂 (ℓ (𝑑 + log𝑛)𝑛) with ℓ a parameter).

We will enrich the classic BGPs of graph databases by assuming

a given 𝐾-NN graph on the same nodes of the graph database and

permitting, in addition to the triple patterns of the BGPs, zero or

more expressions of the form 𝑥 ⊳𝑘 𝑦, where 𝑥 and𝑦 can be constants

or variables and 1 ≤ 𝑘 ≤ 𝐾 is an integer. The expression𝑥⊳𝑘𝑦means

that 𝑦 is among the 𝑘 closest elements to 𝑥 , that is, 𝑦 ∈ 𝑘-NN(𝑥).
Let us define our extended BGPs and their worst-case optimality.

Definition 5. Let𝐺 (𝑉 , 𝐸) be a graph database,𝑈 be its universe
of constants, and𝑊 be a universe of variables disjoint from 𝑈 . An
extended BGP 𝑄 is a set of triple patterns (𝑥,𝑦, 𝑧), where 𝑥,𝑦, 𝑧 ∈
𝑈 ∪𝑊 , and a set of clauses 𝑥 ⊳𝑘 𝑦, where 𝑥,𝑦 ∈ 𝑈 ∪𝑊 , 𝑥 ≠ 𝑦, and
𝑘 ≥ 1 is an integer. The output𝑄 (𝐺) of the extended BGP is the set of
all assignments 𝐴 :𝑊𝑄 → 𝑈 , where𝑊𝑄 ⊆𝑊 are the variables that
appear in𝑄 , such that (1) for each triple pattern (𝑥,𝑦, 𝑧) ∈ 𝑄 , it holds
that (𝐴′ (𝑥), 𝐴′ (𝑦), 𝐴′ (𝑧)) ∈ 𝐺 , and (2) for each clause 𝑥 ⊳𝑘 𝑦 ∈ 𝑄 , it
holds that𝐴′ (𝑦) ∈ 𝑘-NN(𝐴′ (𝑥)), where𝐴′ (𝑥) = 𝑥 for all 𝑥 ∈ 𝑈 and
𝐴′ (𝑥) = 𝐴(𝑥) for all 𝑥 ∈𝑊𝑄 .

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

Definition 6. Given a graph database 𝐺 with 𝑁 triples and a
𝐾-NN graph for a metric distance 𝑑 on its nodes 𝑉 , an algorithm to
compute 𝑄 (𝐺) for an extended BGP 𝑄 is worst-case optimal (wco)

if its time complexity is �̃� (𝑄∗), where 𝑄∗ is the maximum size of
𝑄 (𝐺 ′) on any graph𝐺 ′ with 𝑁 ′ ≤ 𝑁 triples and the 𝐾-NN graph of
any metric 𝑑′ on the nodes 𝑉 ′ of 𝐺 ′.

Though we use 𝑥 ⊳𝑘 𝑦 as our similarity primitive, its asymmetric

nature may be unintuitive for final users. We thus build upon it the

following more intuitive symmetric operator:

𝑥 ∼𝑘 𝑦 ⇔ 𝑥 ⊳𝑘 𝑦 ∧ 𝑦 ⊳𝑘 𝑥,

that is, 𝑥 is among the 𝑘 nearest neighbors of 𝑦 and vice versa. We

simply convert any clause 𝑥 ∼𝑘 𝑦 per its definition in order to

handle it in the extended BGPs we just defined.

We will assume for simplicity that all the nodes 𝑉 participate in

the similarity. Our techniques can handle 𝐾-NN graphs defined on

a subset of 𝑉 only, assuming the 𝑘-NN predicates involving other

nodes are always false. We could also have fewer than 𝐾 neighbors

for some nodes of 𝑉 , for example to disregard neighbors that are

too far away in terms of the distance 𝑑 . Furthermore, we could have

various independent 𝐾-NN relations and refer to them in the same

queries. Our techniques can work with any 𝑘-NN relation, without

requiring that it corresponds to some distance 𝑑 ; therefore they

are useful to model similarity functions that are non-metric, for

example. Our optimality proofs are valid even in themore restrictive

case of metric distances (the more restrictive the relation, the harder

to be wco because not every input table is possible).

We can also extend our results to distance-based similarity joins,

that is, indicating that two elements 𝑥 and𝑦 must be within distance

𝑑 to each other. We return to this point at the end of Section 3.3.

3.2 A basic idea
In principle, any indexing scheme solving BGPs in wco time can be

extended to handle the similarity clauses 𝑥 ⊳𝑘 𝑦. At index construc-

tion time, the value 𝐾 is chosen and a suitable representation of

the 𝐾-NN graph is built. At query time, for every clause 𝑥 ⊳𝑘 𝑦, we

materialize the relation 𝑘NN(·, ·) containing all the pairs (𝑎, 𝑏) such
that 𝑏 ∈ 𝑘-NN(𝑎), and replace the clause 𝑥 ⊳𝑘 𝑦 by the expression

𝑘NN(𝑥,𝑦). We then run the wco algorithm on the modified query.

Materializing. A first problem is how to efficiently materialize

𝑘NN(·, ·) from the 𝐾-NN graph, because the value 𝑘 used at query

time can be much smaller than 𝐾 (additionally, each clause may

use a different 𝑘 value). For the discussion, let us regard the 𝐾-NN

graph as a table of triples (𝑢, 𝑣, 𝑗), meaning that 𝑣 = 𝐾-NN(𝑢) [𝑗].
To materialize 𝑘NN(·, ·) we must extract all the triples (𝑢, 𝑣, 𝑗) for
1 ≤ 𝑗 ≤ 𝑘 , and then sort them by (𝑢, 𝑣) and by (𝑣,𝑢) to build the

two LTJ tries representing 𝑘NN(·, ·). The most efficient way is to

maintain the𝐾-NN graph sorted by 𝑗 , so the extraction takes𝑂 (𝑘𝑛)
time and the sorting for trie construction takes time 𝑂 (𝑘𝑛 log𝑛).

While this time is proportional to the input size and thus within

wco bounds in theory, the approach is totally impractical because

in most useful cases the output is much smaller than the input. As

an example, in our experimental setup of Section 6, just copying

the part of the 𝐾-NN graph and sorting it twice, for 𝑘 = 50, takes

260 seconds, only after which the actual query processing starts.

Instead, our proposed index handles the complete query process

in as little as 1.3 seconds for the fastest queries we consider, or as

much as 103 seconds for the most expensive ones.

We show in Section 3.3 how our data structures manage to sim-
ulate the desired tables 𝑘NN(·, ·), without ever materializing them,

by representing the 𝐾-NN graph in a specific way, using WTs. Ad-

ditionally, we seamlessly extend the Ring to emulate the tries of

these simulated tables without building them at query time.

Optimality. Using LTJ is not wco in this case, because the rela-

tions 𝑘NN(·, ·) satisfy what is known as a degree constraint: there
are only 𝑘 tuples in the relation sharing their same first component.

When the 𝑘-NN constraints follow an ayclicity property one can

retain worst-case optimality by choosing an order that respects

such acycilicity [1, 43]. In the general case, optimality can be ob-

tained by using PANDA [2], an algorithm that is optimal for the

setting considered in this paper. This is, again, impractical, however.

While the PANDA algorithm may work with theoretical guarantees

in data complexity, the authors themselves note that this involves

huge query-dependent factors, and that it is important to find algo-

rithms that work faster in practice [2]. The approach we develop

in Section 4 is to construct a good variable ordering for LTJ in

a greedy fashion, taking advantage of the fact that the Ring can

retrieve the number of instantiations for each triple pattern before

processing them. We show that our approach remains worst-case

optimal (just as PANDA) for a relevant class of extended BGPs that

includes queries with cyclic 𝑘-NN constraints. Our experiments in

Section 6 show that our variable ordering strategy can improve

query computation time in practice, even for queries where our

strategy is not necessarily worst-case optimal.

3.3 Our solution
In order to extend the LTJ algorithm to handle the similarity con-

straints 𝑥 ⊳𝑘 𝑦, we merge the classic Ring representation of the

database graph (Section 2.4) with a representation of the 𝐾-NN

graph. We choose 𝐾 at index construction time, and then can han-

dle queries 𝑥 ⊳𝑘 𝑦 for any 1 ≤ 𝑘 ≤ 𝐾 . Importantly, depending on the

elimination order of the variables in LTJ, it may be the case that we

need to compute the relation 𝑥 ⊳𝑘 𝑦 in a backwards fashion: instead

of looking for the 𝑘 nearest neighbors of a node 𝑢, we may have to

look for those nodes of which 𝑢 is a 𝑘-nearest neighbor. Thus, our

𝐾-NN graph representation consists of two sequences, 𝑆 [1 . . 𝐾𝑛]
and 𝑆 ′ [1 . . 𝐾𝑛], plus a bitvector 𝐵 [1 . . 2𝑛𝐾], which record the 𝐾-

NN graph and its transpose. For simplicity, let us identify the graph

nodes 𝑉 with the integers in [1 . . 𝑛].
Definition 7. For any 𝑢 ∈ [1 . . 𝑛], let 𝑆𝑢 [1 . . 𝐾] be such that

𝑆𝑢 [𝑗] = 𝐾-NN(𝑢) [𝑗]. We then define 𝑆 [1 . . 𝐾𝑛] = 𝑆1 ·𝑆2 · · · 𝑆𝑛 , thus
𝑆𝑢 [𝑗] = 𝑆 [(𝑢 − 1)𝐾 + 𝑗].

Definition 8. For any 𝑢 ∈ [1 . . 𝑛], let 𝑆 ′𝑢 be the sequence of
elements 𝑣 such that 𝑆𝑣 [𝑗𝑣] = 𝑢 for some 1 ≤ 𝑗𝑣 ≤ 𝐾 , sorted by
increasing value of 𝑗𝑣 with ties broken arbitrarily. We then define
𝑆 ′ [1 . . 𝐾𝑛] = 𝑆 ′

1
· 𝑆 ′

2
· · · 𝑆 ′𝑛 . To distinguish the different values of 𝑗𝑣 in

𝑆 ′, let 𝑆 ′𝑢 contain 𝑠𝑡 elements 𝑣 with 𝑗𝑣 = 𝑡 , then we define bitvector
𝐵𝑢 = 10

𝑠1
10

𝑠2 · · · 10𝑠𝐾 and 𝐵 [1 . . 2𝑛𝐾] = 𝐵1 · 𝐵2 · · ·𝐵𝑛 . Then 𝑆 ′ [𝑖]
corresponds to the 𝑖th 0 in 𝐵; note 𝐵 contains 𝐾𝑛 0s and 𝐾𝑛 1s.

Example 2. In the middle of Figure 1 we show a 3-NN graph,
where each node 𝑢 points to the nodes in 3-NN(𝑢) using Euclidean

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

distance on the plane. For example, the three nearest neighbors of node
𝑢 = 1 are, from closest to farthest, 𝑆1 = 324, and those of node 𝑢 = 2

are 𝑆2 = 134. These strings of length 𝐾 = 3 are concatenated into
the string 𝑆 , shown vertically on the right of the graph. Now consider
𝑆 ′
4
on the right of the figure, which contains the nodes 𝑣 for which

𝑢 = 4 is in 3-NN(𝑣), i.e., such that 𝑢 appears in 𝑆𝑣 . We see that 𝑢 = 4

appears in 𝑆1, 𝑆2, 𝑆3, 𝑆5, 𝑆6, and 𝑆7, at positions 𝑗1 = 3, 𝑗2 = 3, 𝑗3 = 3,
𝑗5 = 2, 𝑗6 = 1, and 𝑗7 = 1, respectively. We write those values of 𝑣
in 𝑆 ′

4
= 675123 by increasing order of 𝑗𝑣 , that is, from smallest to

largest value of 𝑘 . Then, 𝑆 ′
4
[1 . . 2] = 67 are the nodes 𝑣 for which

𝑢 ∈ 1-NN(𝑣), 𝑆 ′
4
[1 . . 3] = 675 are those for which 𝑢 ∈ 2-NN(𝑣), and

𝑆 ′
4
[1 . . 6] are those for which 𝑢 ∈ 3-NN(𝑣). These limits inside 𝑆 ′

4
,

at positions 2, 3, and 6, are marked in unary by 𝐵4 = 100101000.
As another example, we have 𝑆 ′

1
= 23 with 𝐵1 = 10011 because

1 ∈ 1-NN(2) and 1 ∈ 1-NN(3).

This arrangement in 𝑆 ′ allows us to have a range for the values

𝑥 such that 𝑥 ⊳𝑘 𝑦 when 𝑦 is fixed.

Lemma 1. For any 𝑣 , the values 𝑢 such that 𝐾-NN(𝑢) [𝑡] = 𝑣 are
written in 𝑆 ′ from position 𝑆 ′ [𝑝𝑣 (𝑡)], with 𝑝𝑣 (𝑡) = select1 (𝐵, (𝑣 −
1)𝐾 + 𝑡) − (𝑣 − 1)𝐾 − 𝑡 + 1.

Proof. Let 𝑠𝑡 be as in Def. 8; then the first of the desired elements

𝑢 is at 𝑆 ′𝑣 [𝑝], with 𝑝 = 𝑠1 + · · · + 𝑠𝑡−1 + 1. By the definition of

𝐵𝑣 , it holds that 𝑝 = select1 (𝐵𝑣, 𝑡) − 𝑡 + 1. Since 𝐵𝑣 starts at the

((𝑣 − 1)𝐾 + 1)th 1 of 𝐵 and the 0s of 𝐵 correspond to the positions

in 𝑆 ′, 𝑆 ′𝑣 starts at 𝑆
′ [select1 (𝐵, (𝑣 − 1)𝐾 + 1) − (𝑣 − 1)𝐾]. Therefore,

𝑆 ′𝑣 [𝑝] corresponds to 𝑆 ′ [𝑝𝑣 (𝑡)]. □

Lemma 2. The following are equivalent.

(𝑎) 𝑣 ∈ 𝑘-NN(𝑢),
(𝑏) 𝑣 is in 𝑆 [(𝑢 − 1)𝐾 + 1 . . (𝑢 − 1)𝐾 + 𝑘] and
(𝑐) 𝑢 is in 𝑆 ′ [𝑝𝑣 (1) . . 𝑝𝑣 (𝑘 + 1) − 1].

Proof. Conditions (𝑎) and (𝑏) are equivalent by Def. 7. Condi-

tion (𝑎) is equivalent to 𝑣 appearing in 𝑆𝑢 [1 . . 𝑘], i.e., 𝑆𝑢 [𝑡] = 𝑣 for
some 1 ≤ 𝑡 ≤ 𝑘 . By Lemma 1, 𝑢 appears in 𝑆 ′ [𝑝𝑣 (𝑡) . . 𝑝𝑣 (𝑡 + 1) − 1].
Taking the union of those ranges for 1 ≤ 𝑡 ≤ 𝑘 , we have that condi-
tion (𝑎) is equivalent to𝑢 appearing in 𝑆 ′ [𝑝𝑣 (1) . . 𝑝𝑣 (𝑘+1)−1]. □

Consider a clause of the form 𝑥 ⊳𝑘 𝑦 in the query. Our algorithm

proceeds exactly as if we had materialized the relation 𝑘NN(𝑥,𝑦).
Therefore, whenever 𝑥 or 𝑦 is bound, our LTJ algorithm must simu-

late the binding of the first or the second component of 𝑘NN(·, ·) to
𝑥 or 𝑦, respectively. In LTJ, this would correspond to representing

𝑘NN(𝑥,𝑦) with two tries,𝑇𝑥𝑦 with order 𝑥𝑦 and𝑇𝑦𝑥 with order 𝑦𝑥 ,

and descending by 𝑇𝑥𝑦 if 𝑥 is materialized first and by 𝑇𝑦𝑥 if 𝑦 is

materialized first. We do not materialize those tries either, however.

Just as the Ring represents every node of the tries𝑇spo, etc. as some

range 𝐶 𝑗 [𝑏 . . 𝑒], we represent the nodes of 𝑇𝑥𝑦 and 𝑇𝑦𝑥 as ranges

in 𝑆 or 𝑆 ′. Precisely, by Lemma 2, if 𝑥 is bound first, we simulate de-

scending in𝑇𝑥𝑦 by associating the range 𝑆 [(𝑥−1)𝐾+1 . . (𝑥−1)𝐾+𝑘]
with the clause 𝑥 ⊳𝑘 𝑦. If, instead, 𝑦 is bound first, we simulate de-

scending in𝑇𝑦𝑥 by associating the range 𝑆 ′ [𝑝𝑦 (1) . . 𝑝𝑦 (𝑘 + 1) − 1]
with the clause 𝑥 ⊳𝑘 𝑦. Those ranges will then be included in the

corresponding intersections when the variable𝑦 (in the first case) or

𝑥 (in the second case) is bound, exactly as any other column range

𝐶 𝑗 [𝑏 . . 𝑒] corresponding to triple patterns in 𝑄 . The WT operation

range_next_value allows us running intersections on the ranges

in 𝑆 and 𝑆 ′ without the need of sorting the values.

Example 3. Consider again Figure 1, and consider now the ex-
tended BGP 𝑄 = {(𝑥, c, 𝑦), (𝑦, c, 𝑧), 𝑦 ∼2 𝑧}, which looks for nearby
places (𝑦, 𝑧) we can go consecutively from 𝑥 at low cost. We start
the process as in Example 1, but when we bind 𝑦 := 4, we also de-
scend by 𝑦 = 4 in the tries of 𝑇𝑦𝑧 and 𝑇𝑧𝑦 , as we have the clause
𝑦 ∼2 𝑧 ≡ 𝑦 ⊳2 𝑧 ∧ 𝑧 ⊳2 𝑦. This corresponds to associating the range
𝑆4 [1 . . 2] = 𝑆 [10 . . 11] with 4⊳2𝑧 and the range 𝑆 ′

4
[1 . . 3] = 𝑆 ′ [7 . . 9]

with 𝑧 ⊳2 4. These ranges are also outlined in the figure. Say we now
eliminate 𝑧. The Ring intersects the ranges𝐶o [5 . . 6] associated with
(4, c, 𝑧), 𝑆 [10 . . 11] associated with 4 ⊳2 𝑧, and 𝑆 ′ [7 . . 9] associated
with 𝑧 ⊳2 4. The intersection yields the candidate set {6}. We then bind
𝑧 := 6, associating 𝐶o [6] with the triple (4, c, 6), 𝑆 [10] with 4 ⊳2 6,
and 𝑆 ′ [7] to 6 ⊳2 4. We finally eliminate 𝑥 , which has two bindings
in 𝐶s [2 . . 3] = {2, 3}. The solutions are then (𝑥,𝑦, 𝑧) = (2, 4, 6) and
(𝑥,𝑦, 𝑧) = (3, 4, 6). If we used 𝑦 ∼3 𝑧 we would have also found the
solutions (2, 4, 5) and (3, 4, 5).

In order for those ranges in 𝑆 and 𝑆 ′ to be seamlessly integrated

into the LTJ algorithm supported by the Ring, we represent the
sequences 𝑆 and 𝑆 ′ using wavelet trees, whereas the bitvector 𝐵

must be represented supporting constant-time select queries. The
total space of 𝑆 , 𝑆 ′ and 𝐵 adds up to 2𝑛𝐾 + 𝑜 (𝑛𝐾) words.

Range-based similarity. While as discussed in Section 3.1 the

𝑘-NN model is preferred in many cases, there are others (e.g., geo-

graphic distances) where using distance constraints may be more

intuitive. Our scheme can be extended to support range-based sim-

ilarity joins, with clauses of the form 𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝑑 , where 𝑑 is

bounded by some maximum distance of interest, 𝑑max. To support

it, we could store a distance graph represented as the WT of a se-

quence 𝐷 , much like 𝑆 ′ in the 𝐾-NN graph, where for every 𝑢 we

store all the nodes 𝑣 within distance at most 𝑑max from 𝑢, in in-

creasing distance order, and a bitvector similar to 𝐵 to mark the

region of every node 𝑢 in 𝐷 . Whenever 𝑥 (or 𝑦) is bound in the

clause 𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝑑 , we find the range of 𝑥 (or 𝑦) in 𝐷 and binary

search the prefix of the nodes at distance at most 𝑑 from 𝑢. This

range is added to participate in the intersection when later 𝑦 (or

𝑥) is bound. If computing the distances 𝑑 (𝑢, 𝑣) takes non-constant
time, we could store them in an array parallel to 𝐷 . Overall, this

adds 𝑂 (log𝑁) extra time per binding of 𝑥 (or 𝑦), which does not

alter the total complexity. The resulting time is then the same as

if we had set clauses 𝑥 ⊳𝑘 𝑦 and 𝑦 ⊳𝑘 ′ 𝑥 , where 𝑥 and 𝑦 have 𝑘 and

𝑘′ nodes within distance 𝑑 , respectively. Note that 𝑘 and 𝑘′ will be
known to the algorithm and could be used to choose the variable

elimination order. Since 𝑘 and 𝑘′ depend on each binding of 𝑥 and𝑦,

however, the analysis is messier; this is why we fix 𝑘 for simplicity

of exposition.

4 OPTIMAL VARIABLE ORDERINGS

Previous work on the LTJ algorithm in the graph context shows that

the order in which variables are instantiated makes no difference in

the worst-case optimality of the algorithm (although it does have an

impact in practice [33, 44]). We will show that, on the contrary, the

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

variable elimination order does make a difference in our extended

LTJ algorithm due to the degree constraints naturally present in the

𝑘NN(·, ·) tables, and thus we face the problem of finding variable

orderings that reach worst-case optimality.

Our variable ordering strategy builds from, and extends, previous

strategies designed for queries with acyclic degree constraints [1,

43]. It is based on instantiating variables in an adaptive fashion,

choosing at each step the variable with the fewest bindings among

those that can be chosen in a topological traversal of the graph of

query constraints, whenever possible (i.e., avoiding binding𝑦 before

𝑥 in clauses 𝑥 ⊳𝑘 𝑦). Our resulting LTJ extension, which can handle

any extended BGP, not only inherits the worst-case optimality of

the strategies that handle acyclic topologies, but also produces wco

strategies on some classes of queries with cyclic constraints.

Compared to PANDA [2], which can deal with arbitrary de-

gree constraints and always achieves worst-case optimality, our

extended LTJ strategy provides a simpler way of handling extended

BGPs. While our strategy is not optimal for all queries, it is known

that the running time of PANDA includes factors of important

magnitude that depend on the query. Hence, our extended LTJ

strategy can be seen as a lightweight alternative to PANDA, which

is asymptotically optimal for a relevant class of queries.

4.1 Size bounds for extended BGPs
We can reason about output size bounds for our queries by regard-

ing, again, each clause 𝑥 ⊳𝑘 𝑦 as a relation 𝑘NN(𝑥,𝑦). As explained,
the degree of this relation is at most 𝑘 . Relations with degree con-

straints usually restrain the number of tuples in the output.

Example 4. Consider 𝑄 = (𝑥, 𝑅,𝑦), (𝑦, 𝑆, 𝑧), 𝑥 ⊳𝑘 𝑧, which cor-
responds to the classic triangle query where one of the relations is
replaced by a 𝑘-NN constraint. Let 𝐺 be a graph with 𝑁 edges. If we
treat the constraint 𝑥 ⊳𝑘 𝑧 as a virtual relation 𝑘NN(𝑥, 𝑧) and apply
the classic AGM result, we obtain the bound 𝑂 (𝑁 3/2).

This bound, however, is not tight, because 𝑘NN(𝑥, 𝑧) satisfies a
degree constraint: each constant eliminating 𝑥 can be connected only
to its 𝑘 nearest neighbors. This reduces the size of the answers, which
are now tightly bound by𝑂 (𝑘𝑁): there are at most 𝑁 edges matching
(𝑥, 𝑅,𝑦), where for each such edge we find the 𝑘 nearest neighbors
from 𝑥 ⊳𝑘 𝑧, and thereafter (𝑦, 𝑆, 𝑧) can (at most) filter results.

In their seminal paper, Atserias et al. [9] showed that the maxi-

mum number of output tuples of an equijoin was always bounded

by the result of a linear program depending on the query and the

database instance; that bound was further shown to be tight.

For the case of extended BGPs, we can also bound their number

of answers by using a specific linear program. Moreover, while

the problem of devising tight lower bounds for BGPs with degree

constraints is open (see, e.g., [1]), we will show that our program

produces an upper bound that is tight (in data complexity) for a

wide class of extended BGPs covering many queries one would

expect in practice. Our linear program extends work by Ngo [43]

with an additional restriction on dependencies following a cyclic

constraint. Let us begin with some definitions.

Definition 9. The constraint graph of an extended BGP 𝑄 has
the variables𝑊𝑄 as nodes, and one directed edge 𝑥 → 𝑦 per constraint
𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 are variables. We say that the constraints of

𝑄 are acyclic iff its constraint graph is acyclic. A constraint is cyclic
if its edge participates in a cycle in the constraint graph of 𝑄 .

To specify our linear program, let us assume first that our queries

are safe: for every clause 𝑥 ⊳𝑘 𝑦 in 𝑄 there must be a triple pattern

mentioning 𝑥 ; we will later explain how to deal with unsafe queries.

Let𝑄 be an extended BGP with𝑀 triple patterns over a graph with

𝑁 tuples. We associate two sets of weights with 𝑄 : a weight𝑤𝑖 for

𝑡𝑖 , the 𝑖th triple pattern in 𝑄 , and a weight 𝛿𝑥𝑦 for each constraint

𝑥 ⊳𝑘 𝑦 in𝑄 . We write 𝑥 ∈ 𝑡𝑖 to indicate that variable 𝑥 appears in 𝑡𝑖 .

The program associated with 𝑄 is then:

minimize

𝑀∑︁
𝑖=1

𝑤𝑖 log𝑁 +
∑︁

𝑥⊳𝑘𝑦∈𝑄
𝛿𝑥𝑦 log𝑘

where

∑︁
𝑖, 𝑥∈𝑡𝑖

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥∈𝑄
𝛿𝑧𝑥 ≥ 1 for each variable 𝑥 in 𝑄 ,∑︁

𝑖, 𝑥∈𝑡𝑖
𝑤𝑖 − 𝛿𝑥𝑦 ≥ 0 for each cyclic constraint 𝑥 ⊳𝑘 𝑦 in 𝑄 .

(1)

Let 𝜌∗ (𝑄, 𝑁) denote the optimal solution to this linear program.

The value 𝑄∗ = 2
𝜌∗ (𝑄,𝑁)

was shown to be a tight upper bound on

|𝑄 (𝐺) | when the constraints of 𝑄 are acyclic [43]. The following

lemma transfers this result into our framework.

Lemma 3 (cf. [43]). The number of answers to an extended BGP
𝑄 whose constraints are acyclic, over any graph with 𝑁 tuples, is
bounded by 𝑄∗, and this bound is tight.

Note that the only restriction we are considering on the tables

𝑘NN(·, ·) is their degree constraint, whereas worst-case optimality

in Def. 6 refers to valid𝐾-NN graphs that correspond to somemetric

on𝑉 . The lower bound still holds because there is always a suitable

metric 𝑑 for every desired table 𝑘NN(·, ·): On the trivial metric

𝑑 (𝑥, 𝑥) = 0 and 𝑑 (𝑥,𝑦) = 1 for all 𝑥 ≠ 𝑦, where all the nearest-

neighbor comparisons are ties, every table 𝑘NN(·, ·) is valid.
The program may overestimate the number of answers when

the constraint graph of 𝑄 has cycles, however. While there are

better bounds for queries with general degree constraints [1, 2],

our program provides a simpler bound that can nevertheless be

shown to be tight in several practical cases. We further show desir-

able properties of this program for queries with small cycles, and

empirically show that it leads to efficient practical algorithms.

Abo Khamis et al. assume in their analysis that queries are safe.

To deal with unsafe queries, we add a predicate Dom(𝑥) for each
constraint 𝑥 ⊳𝑘 𝑦, which is instantiated as the domain of the graph.

Adding weights 𝑠𝑥𝑦 for each unsafe constraint, the program is then:

minimize

𝑀∑︁
𝑖=1

𝑤𝑖 log𝑁 +
∑︁

𝑥⊳𝑘𝑦∈𝑄
(𝛿𝑥𝑦 log𝑘 + 𝑠𝑥𝑦 log𝐷)

where

∑︁
𝑖, 𝑥∈𝑡𝑖

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥∈𝑄
𝛿𝑧𝑥 +

∑︁
𝑥⊳𝑘𝑦∈𝑄

𝑠𝑥𝑦 ≥ 1; var 𝑥 in 𝑄 ,

©­«
∑︁

𝑖, 𝑥∈𝑡𝑖
𝑤𝑖 +

∑︁
𝑥⊳𝑘𝑦∈𝑄

𝑠𝑥𝑦
ª®¬ − 𝛿𝑥𝑦 ≥ 0; 𝑥 ⊳𝑘 𝑦 cyclic.

(2)

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

Note that this program is equivalent to to the program (1) when

queries are safe and 𝑁 ≤ 𝐷 : in this case there is always an optimal

solution where all weights 𝑠𝑥𝑦 are set to 0.

4.2 Queries with acyclic constraint graphs
Even in the case of acyclic constraint graphs, variable orderings

are important for the evaluation of queries. For instance, when

running LTJ to evaluate the query of Example 4 over graphs with 𝑁

edges, the order 𝑦, 𝑧, 𝑥 requires up to 𝑁 3/2
eliminations of variables,

whereas the order 𝑦, 𝑥, 𝑧 requires only 𝑘𝑁 , because the constraint

𝑥 ⊳𝑘 𝑧 restricts to only 𝑘 bindings for 𝑧 for each binding of 𝑥 .

Previous work on processing queries with degree constraints has

shown that wco time can be obtained on acyclic queries by instan-

tiating variables according to the topological ordering of the query

(i.e., always instantiating 𝑥 before 𝑦 if there are at most 𝑘 bindings

of 𝑦 per value of 𝑥). Since our data representation (Section 3.3)

allows us to intersect 𝑘-NN relations while using leap() in LTJ,

we can use the same variable ordering strategy (i.e., respecting the

order of the edges of the constraint graph) to achieve worst case

optimality. Such a topological order on the constraint graph can

be computed in 𝑂 (|𝑄 |) time. We can now state our result about

optimality for queries with acyclic constraints.

Theorem 2. Let𝐺 be a graph database with 𝑛 nodes and 𝑁 edges
and𝐾 be an integer. Then, a representation using 3𝑁+2𝑛𝐾+𝑜 (𝑁+𝑛𝐾)
words of space can compute 𝑄 (𝐺) for extended BGPs 𝑄 with acyclic
constraints of the form 𝑥 ⊳𝑘 𝑦, with 1 ≤ 𝑘 ≤ 𝐾 , in 𝑂 (𝑄∗ |𝑄 | log𝑁)
time, where 𝑄∗ is the solution to the program (2).

Before proving the theorem we develop some additional nota-

tion; we will use it again in the following section when we extend

Theorem 2 for queries with cycles.

Definition 10. For an unbound variable 𝑥 , let 𝑄𝑥 be the set of
(partially instantiated) triples 𝑡 ∈ 𝑄 such that 𝑥 ∈ 𝑡 , and let 𝑡 (𝑥) be
the set of distinct values in the database to which 𝑥 can be instantiated
in triple 𝑡 ∈ 𝑄𝑥 (i.e., the answers to 𝑡 as if every other variable were
existentially quantified). Further let ℓ𝑥 = min𝑡 ∈𝑄𝑥 |𝑡 (𝑥) |.

We are ready for the proof.

Proof of Theorem 2. We simulate LTJ with the Ring, as ex-
plained in Section 3.3, from where the space follows. We use a

variable ordering that is compatible with a traversal of the con-

straint graph of 𝑄 in topological order.

Let 𝐺 be a graph of 𝑁 edges over a domain of size 𝐷 , 𝑄 a query,

and {𝑤𝑖 }𝑀𝑖=1, {𝛿𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 , {𝑠𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 be a (not necessarily op-

timal) solution to the linear program (2). Letting |𝑡 | denote the

number of triples matching 𝑡 , we show that the algorithm runs in

time bounded by

|𝑄 | log𝑁 ·
𝑀∏
𝑖=1

|𝑡𝑖 |𝑤𝑖
∏

𝑥⊳𝑘𝑦∈𝑄
𝑘𝛿𝑥𝑦

∏
𝑥⊳𝑘𝑦∈𝑄

𝐷𝑠𝑥𝑦 . (3)

The proof is by induction on the number of steps performed by the

algorithm, binding one variable 𝑥 at a time.

For the base case, 𝑄 has a single variable 𝑥 . The algorithm com-

putes the intersection of the sets 𝑡 (𝑥) for every triple 𝑡 ∈ 𝑄𝑥 , and

also of the sets 𝑘-NN(𝑎) for every clause 𝑎 ⊳𝑘 𝑥 , with constant 𝑎,

and the sets {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)} for every clause 𝑥 ⊳𝑘 𝑏 with constant

𝑏. Using the Ring, we can intersect all these sets in time bounded

by the size of the smallest set we intersect, times a |𝑄 | log𝑁 factor

(recall Section 2.4). Given that those sets are always bounded by

the minimum between ℓ𝑥 and 𝐷 , the size of 𝑘-NN(𝑎) is bounded
by 𝑘 , and the size of {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)} is bounded by 𝐷 (actually,

by 𝑛 ≤ 𝐷), we have that the time is bounded by min(ℓ𝑥 , 𝑘, 𝐷), or
min(ℓ𝑥 , 𝐷) if no clauses of the form 𝑎 ⊳𝑘 𝑥 exist in 𝑄 . We have as-

sumed weights𝑤𝑖 , 𝛿𝑥𝑦 and 𝑠𝑥𝑦 are an admissible solution, so they

verify the constraint

∑
𝑡𝑖 ∈𝑄𝑥 𝑤𝑖 +

∑
𝑎⊳𝑘𝑥∈𝑄 𝛿𝑎𝑥 +∑

𝑥⊳𝑘𝑏∈𝑄 𝑠𝑥𝑏 ≥ 1

by Eq. (2). This means that

min(ℓ𝑥 , 𝑘, 𝐷) ≤
∏

𝑡𝑖 ∈𝑄𝑥
|𝑡𝑖 |𝑤𝑖

∏
𝑎⊳𝑘𝑥∈𝑄

𝑘𝛿𝑎𝑥
∏

𝑥⊳𝑘𝑏∈𝑄
𝐷𝑠𝑥𝑏 ,

because ℓ𝑥 is smaller than each |𝑡𝑖 | and the minimum of a set of

reals is bounded by their geometric mean.

The inductive case follows from the proof of Ngo [43, Thm. 5.1],

adapted to our base case. □

4.3 Queries with constraint cycles
We now consider the general case, where the constraint graph

of 𝑄 can have cycles. Knowing how to operate optimally when

the constraint graph is acyclic, we break the cycles in the graph

of 𝑄 adaptively, following a topological ordering of the strongly

connected components, and from each component, binding the

variable that yields the minimum number of candidates. We start

with some definitions.

Definition 11. Given nodes 𝑥 and 𝑦 in a directed graph 𝐶 , we
say that 𝑥 ≺𝐶 𝑦 if there is no path from 𝑦 to 𝑥 in 𝐶 . Furthermore, we
say that node 𝑥 is 𝐶-minimal if 𝑥 ≺𝐶 𝑧 for every other node 𝑧 in 𝐶 .

We then proceed adaptively as follows, where𝐶 is the constraint

graph of the current query 𝑄 , that is, the query 𝑄 with all the vari-

ables already bound replaced by their corresponding constraints:

(1) If there are 𝐶-minimal variables, choose the 𝐶-minimal vari-

able 𝑥 with minimum value ℓ𝑥 .

(2) Otherwise, choose the variable 𝑥 with minimum value ℓ𝑥 .

Note that, in the second case, we are forced to bind some 𝑥 before 𝑧

in a constraint 𝑧 ⊳𝑘 𝑥 . In either case, once we bind 𝑥 , new variables

may become 𝐶-minimal because the edges in the constraint graph

consider only constraints where both variables are (yet) unbound.

In order to enable such a strategy, we need to be able to compute

the quantity ℓ𝑥 for every candidate variable 𝑥 . We can do this with

the Ring, as it can retrieve any |𝑡 (𝑥) | in 𝑂 (log𝑁) time using the

operation range_symbols on the range corresponding to 𝑡 (𝑥); re-
call Section 2.3. It can also compute the cardinalities of 𝑘NN(𝑎, 𝑥)
or 𝑘NN(𝑥, 𝑎) in constant time because they are the sizes of the cor-

responding ranges in 𝑆 or 𝑆 ′. Every time a variable 𝑥 is bound along

the adaptive algorithm, the LTJ algorithm recomputes the range of

each tuple 𝑡𝑥 ∈ 𝑄𝑥 in time 𝑂 (log𝑁), so the cost of recomputing

|𝑡 (𝑥) | and updating ℓ𝑥 is subsumed in the current cost of LTJ. The

space of the Ring, in this case, grows but is still 𝑂 (𝑁).
In section 6 we show that this strategy can lead to fast query

resolution in practice, even though it is not necessarily wco: when

several constraints form a cycle it could be the case that the vari-

able 𝑥 minimizing ℓ𝑥 leads to more total instantiations than other

orderings. However, we can show that the running time of this

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

algorithm is still bounded by our program in the particular case

where there is a single “maximal” cycle of length two. This case is

especially interesting because the symmetric clauses 𝑥 ∼𝑘 𝑦, with
variables 𝑥 and 𝑦, form cycles of length 2.

Definition 12. The constraint graph of 𝑄 is single 2-cyclic iff it
has at most one cycle, it is of the form {𝑥 ⊳𝑘 𝑦,𝑦 ⊳𝑘 𝑥}, and there are
no edges 𝑥 ⊳𝑘 𝑧 or 𝑦 ⊳𝑘 𝑧, with a variable 𝑧 ∉ {𝑥,𝑦}.

Theorem 3. Let𝐺 be a graph database with 𝑛 nodes and 𝑁 edges
and 𝐾 be an integer. Then, a representation using 𝑂 (𝑁) + 2𝑛𝐾 +
𝑜 (𝑛𝐾) words of space can compute 𝑄 (𝐺) for extended BGPs 𝑄 with
constraints of the form 𝑥 ⊳𝑘 𝑦, with 1 ≤ 𝑘 ≤ 𝐾 , and forming a single
2-cyclic graph, in 𝑂 (𝑄∗ |𝑄 | log𝑁) time, where 𝑄∗ is the solution to
the linear program (2).

Proof. Given the structure of 𝑄 , we can think of the algorithm

as a sequence of steps where it binds one minimal variable 𝑥 at a

time, finishing with a step where it either binds one variable (if 𝑄

is acyclic), or the two variables of the only 2-cycle (𝑥,𝑦).
As in the proof of Theorem 2, we consider any solution {𝑤𝑖 }𝑀𝑖=1,

{𝛿𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 , {𝑠𝑥𝑦}𝑥⊳𝑘𝑦∈𝑄 to the linear program (2), and prove

that the algorithm runs in time bounded by Eq. (3).

The proof is again by induction on the steps performed by the

algorithm. This time, for the base case we have two options: either

𝑄 has a single variable, or it has two variables forming a 2-cycle.

The proof for the case of a single variable is exactly as in Theorem 2.

If the query features two variables (𝑥,𝑦) forming a 2-cycle, we

proceed as follows. Assume ℓ𝑥 ≤ ℓ𝑦 ; the proof in the other case is

analogous. The algorithm would then first iterate over all bindings

𝐼 for 𝑥 , that is, 𝐼 is the intersection between all sets 𝑡 (𝑥), all sets
𝑘-NN(𝑎) for constraints 𝑎 ⊳𝑘 𝑥 in𝑄 , and all sets {𝑏 | 𝑥 ∈ 𝑘-NN(𝑏)}
for constraints 𝑥 ⊳𝑘 𝑏 in 𝑄 . Let us call 𝜄 = |𝐼 |.

Then, for each such instantiation 𝑐 ∈ 𝐼 , the algorithm processes

𝑄 [𝑥 → 𝑐] (the query 𝑄 where we replace every 𝑥 by 𝑐), which

implies intersecting the following sets; 𝑡 [𝑥 → 𝑐] denotes the triple
𝑡 as (possibly) instantiated in 𝑄 [𝑥 → 𝑐].

• Set 𝑡 [𝑥 → 𝑐] (𝑦) for every triple 𝑡 ∈ 𝑄𝑦 ∩𝑄𝑥 .

• Set 𝑡 [𝑥 → 𝑐] (𝑦) = 𝑡 (𝑦) for every triple 𝑡 ∈ 𝑄𝑦 \𝑄𝑥 .

• Set 𝑘-NN(𝑎) for each constraint 𝑎 ⊳𝑘 𝑦 in 𝑄 [𝑥 → 𝑐], with
constant 𝑎. Note there exists (at least) one such set, for 𝑎 = 𝑐 .

• Set {𝑏 | 𝑦 ∈ 𝑘-NN(𝑏)} for each constraint 𝑦 ⊳𝑘 𝑏.

For an instantiation 𝑥 := 𝑐 , let 𝑡𝑐 be the minimum number of

values over all the sets 𝑡 [𝑥 → 𝑐] (𝑦). As explained, the Ring can pro-
cess this intersection in time𝑂 (min(𝑡𝑐 , 𝑘, 𝐷) · |𝑄 | log𝑁), and hence
the total running time is bounded by |𝑄 | log𝑁 ∑

𝑐∈𝐼 min(𝑡𝑐 , 𝑘, 𝐷).
As for the previous base case, for any 𝑝 , 𝑞, 𝑟 such that 𝑝 + 𝑞 + 𝑟 ≥ 1,

this entails that the running time is bounded by |𝑄 | log𝑁 times∑︁
𝑐∈𝐼

𝑡
𝑝
𝑐 𝑘

𝑞 𝐷𝑟 ≤ 𝑘𝑞 𝐷𝑟
∑︁
𝑐∈𝐼

𝑡
𝑝
𝑐 1

𝑞+𝑟 ≤ 𝑘𝑞 𝐷𝑟

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝 (∑︁
𝑐∈𝐼

1

)𝑞+𝑟
where the last part follows by Holder’s inequality; to apply it we

introduced the factor 1
𝑞+𝑟

in the second term.

We note that the rightmost summation is exactly 𝜄. Then, by

the same reasoning as in the case where we bind one variable, we

have that 𝜄𝑞+𝑟 ≤ min(ℓ𝑥 , 𝑘, 𝐷)𝑞+𝑟 , or min(ℓ𝑥 , 𝐷)𝑞+𝑟 if there were

no constraints 𝑎 ⊳𝑘 𝑥 with 𝑎 ≠ 𝑦 in 𝑄 . Now for any numbers

𝛼 + 𝛽 + 𝛾 ≥ 𝑞 + 𝑟 we have that min(ℓ𝑥 , 𝑘, 𝐷)𝑞+𝑟 ≤ ℓ𝛼𝑥 𝑘
𝛽 𝐷𝛾

, and

min(ℓ𝑥 , 𝐷)𝑞+𝑟 ≤ ℓ𝛼𝑥 𝑘
𝛽 𝐷𝛾

with 𝛽 = 0. Summing up, we have:

𝑘𝑞 𝐷𝑟

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝 (∑︁
𝑐∈𝐼

1

)𝑞+𝑟
≤ 𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
.

Because our weights satisfy program (2), we have that 𝛿𝑦𝑥 ≤∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 +

∑
𝑦⊳𝑘𝑧∈𝑄 𝑠𝑦𝑧 . We identify three cases, depending on

the value of 𝛿𝑦𝑥 .

Case 1 holds when 𝛿𝑦𝑥 ≤ ∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 .

Case 2 holds when

∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 < 𝛿𝑦𝑥 ≤ ∑

𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 .

Case 3 holds when

∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 < 𝛿𝑦𝑥 .

Consider case 1; we explain how to deal with the other cases

shortly. Let 𝑝1 =
∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤𝑖 − 𝛿𝑦𝑥 , and take

𝑝 =
∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 − 𝛿𝑦𝑥 𝛼 =

∑
𝑡𝑖 ∈𝑄𝑥 \𝑄𝑦 𝑤𝑖 − 𝑝1 + 𝛿𝑦𝑥

𝑞 =
∑
𝑧⊳𝑘𝑦∈𝑄 𝛿𝑧𝑦 + 𝛿𝑦𝑥 𝛽 =

∑
𝑧⊳𝑘𝑥∈𝑄 𝛿𝑧𝑥 − 𝛿𝑦𝑥

𝑟 = max(1 − 𝑝 − 𝑞, 0) 𝛾 =
∑
𝑥⊳𝑘𝑧∈𝑄 𝑠𝑥𝑧

Note that our assumptions guarantee that each of these val-

ues is nonnegative. Moreover, we have that 𝑝1 =
∑
𝑡𝑖 ∈𝑄𝑦 𝑤𝑖 −∑

𝑡𝑖 ∈𝑄𝑦∩𝑄𝑥 𝑤𝑖 − 𝛿𝑦𝑥 , and thus 𝛼 + 𝛽 + 𝛾 is∑︁
𝑡𝑖 ∈𝑄𝑥

𝑤𝑖 +
∑︁

𝑧⊳𝑘𝑥∈𝑄
𝛿𝑧𝑥 +

∑︁
𝑥⊳𝑘𝑧∈𝑄

𝑠𝑥𝑧 −©­«
∑︁

𝑡𝑖 ∈𝑄𝑦
𝑤𝑖 − 𝛿𝑦𝑥ª®¬ ≥ 1−𝑝 ≥ 𝑞+𝑟 .

Before finishing we need to further bound the term (∑𝑐∈𝐼 𝑡𝑐)𝑝 .
Writing 𝑝2 =

∑
𝑡𝑖 ∈𝑄𝑥∩𝑄𝑦 𝑤𝑖 , so that 𝑝 = 𝑝1 + 𝑝2, we have that

(∑𝑐∈𝐼 𝑡𝑐)𝑝 = (∑𝑐∈𝐼 𝑡𝑐)𝑝1 (
∑
𝑐∈𝐼 𝑡𝑐)𝑝2 .

Recall that 𝑝1 ≥ 0 in case 1. Thus, we can find a set of weights

𝑤 ′
𝑖
≥ 0 such that 𝑝1 =

∑
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 𝑤

′
𝑖
. Then, (∑𝑐∈𝐼 𝑡𝑐)𝑝1 can be

bounded by ℓ
𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥 |𝑡𝑖 |𝑤

′
𝑖 , because 𝜄 ≤ ℓ𝑥 and 𝑡𝑐 ≤ |𝑡𝑖 | for

any triple 𝑡𝑖 that only mentions variable 𝑦 and not 𝑥 . Moreover,∑
𝑐∈𝐼 𝑡𝑐 ≤ |𝑡𝑖 | for any 𝑡𝑖 ∈ 𝑄𝑥 ∩ 𝑄𝑦 . Putting everything together,

we obtain

𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
≤

𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥 ℓ
𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥

|𝑡𝑖 |𝑤
′
𝑖

∏
𝑡𝑖 ∈𝑄𝑦∩𝑄𝑥

|𝑡𝑖 |𝑤𝑖 . (4)

Finally, note that 𝛼 + 𝑝1 =
∑
𝑄𝑥 \𝑄𝑦 𝑤𝑖 + 𝛿𝑦𝑥 . Thus, we rewrite

ℓ𝛼𝑥 ℓ
𝑝1
𝑥 as ℓ

∑
𝑄𝑥 \𝑄𝑦 𝑤𝑖

𝑥 ℓ
𝛿𝑦𝑥
𝑥 . We know that ℓ𝑥 ≤ |𝑡𝑖 | for any triple

𝑡𝑖 ∈ 𝑄𝑥 \𝑄𝑦 . Given that ℓ𝑥 ≤ ℓ𝑦 and that ℓ𝑦 ≤ |𝑡𝑖 | also holds for

any triple 𝑡𝑖 ∈ 𝑄𝑦 \𝑄𝑥 , we have that ℓ𝑥 ≤ |𝑡𝑖 | for any such triple,

and we can then write

ℓ𝛼𝑥 ℓ
𝑝1
𝑥

∏
𝑡𝑖 ∈𝑄𝑦\𝑄𝑥

|𝑡𝑖 |𝑤
′
𝑖 ≤

∏
𝑡𝑖 ∈𝑄𝑥 \𝑄𝑦

|𝑡𝑖 |𝑤𝑖
∏

𝑡𝑖 ∈𝑄𝑦\𝑄𝑥
|𝑡𝑖 |𝑤𝑖 ,

by redistributing back the weight 𝛿𝑦𝑥 to each of the weights 𝑤 ′
𝑖
.

Substituting back in Eq. (4), we obtain

𝑘𝑞+𝛽 𝐷𝑟+𝛾 ℓ𝛼𝑥

(∑︁
𝑐∈𝐼

𝑡𝑐

)𝑝
≤ 𝑘𝑞+𝛽 𝐷𝑟+𝛾

∏
𝑡𝑖 ∈𝑄𝑥∪𝑄𝑦

|𝑡𝑖 |𝑤𝑖 ,

which finishes the proof of case 1. Indeed, 𝑞 + 𝛽 contains all weights
of constraints associated with 𝑥 or 𝑦,

∑
𝑧⊳𝑘𝑦∈𝑄 𝛿𝑧𝑦 + ∑

𝑧⊳𝑘𝑥∈𝑄 𝛿𝑧𝑥 ,

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

where 𝑧 is either 𝑥 or a constant. Likewise, 𝑟 + 𝛾 is bounded by the

sum of all the relevant weights 𝑠𝑥𝑧 and 𝑠𝑦𝑧 .

The other two cases are proved using the same ideas. For case

2, we set instead 𝑝1 = 𝛿𝑦𝑥 , and for case 3 we further need to

redistribute weights between 𝑝 and 𝑟 so as to subtract 𝛿𝑦𝑥 .

As the inductive case only features instantiations of variables

out of a cycle, we can prove it by combining the proof of Ngo [43,

Thm. 5.1] with the techniques introduced in our base case. □

We remark that the proof of this theorem, and hence the good

properties of our variable ordering, holds for a much wider class of

BGPs, in which we permit any number of 2-cycles as long as one

of the variables in each of these cycles is also the target of a 𝑘-NN

constraint. The proof is omitted for lack of space.

5 IMPLEMENTATION
Our data structure is an extension of the Ring, whose implemen-

tation [6] is coded in C++ using several structures from the SDSL

library [27]. We extend the Ring data structure with those for the

sequences 𝑆 , 𝑆 ′, and bitvector 𝐵. The sequences are represented

with the same wavelet trees used by the Ring. Bitvector 𝐵 is im-

plemented in plain form, with the bit_vector class of SDSL. To

support select, we use select_support_mcl, which takes constant
time by using 20% extra space. We compile our code using gcc
version 6.3.0 with -O9 optimization.

An important aspect of a practical implementation of LTJ-style
algorithms is the order in which variables are bound, as explained.

We use the following rule [6]: The next variable to bind is the 𝑥

with minimum ℓ𝑥 value in the current (i.e., partially instantiated)

query 𝑄 . Finally, we leave for the end the lonely variables, that is,

those that appear only once in𝑄 [33]. This algorithm is adaptive in
the sense that, after binding the first variable 𝑥 with each value 𝑐 ,

the next variable to bind may differ on each 𝑄 [𝑥 → 𝑐].
Per the Ring, we do not compute |𝑡 (𝑥) | precisely for the triple 𝑡

in order to compute ℓ𝑥 , but rather use the size 𝑒 −𝑏 + 1 of the range

[𝑏 . . 𝑒] corresponding to 𝑡 in the current𝑄 . In the case of similarity

clauses 𝑥 ⊳𝑘 𝑎 or 𝑎 ⊳𝑘 𝑥 , the size of the corresponding ranges in 𝑆

or 𝑆 ′ are the exact number of different values 𝑥 can be bound to.

We implemented two variants of our algorithm, and a baseline.

5.1 Ring-KNN-S
This variant is a faithful implementation of the technique we de-

scribe in Section 3.3, but it does not incorporate the restrictions

derived from our optimality analysis in Section 4. That is, we use

the variable binding order just described. Although Section 4 sug-

gests that we should aim to eliminate only 𝐶-minimal variables

when similarity clauses are involved, this comes from the fact that

the condition 𝑥 ⊳𝑘 𝑦 can only bound to 𝑘 the number of candidates

for 𝑦 given 𝑥 , not the other way. On average, however, the number

of values for 𝑥 given 𝑦 is also 𝑘 , because there are exactly 𝑘𝑛 tuples

in the virtual relation 𝑘NN(·, ·).
Therefore, we expect a similar performance on average when

disregarding this restriction, although this could lead to some bad

cases and higher variance. On the other hand, having more freedom

to choose the next variable to bind may lead to better query plans.

5.2 Ring-KNN
This is the full implementation of our technique, observing the

restrictions of Section 4.

Each time we must choose the next (non-lonely) variable to elim-

inate, we pass through the edges 𝑥 → 𝑦 of the current constraint

graph (i.e., the clauses 𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 are variable),

marking the variables 𝑦 as not yet ready to be bound. At the end, if

there are unmarked variables, we choose to eliminate the unmarked

variable 𝑥 with the least value ℓ𝑥 . If all the variables are marked,

instead, we choose the (marked) variable 𝑥 with the least value ℓ𝑥 .

5.3 Baseline
Not having an implementation to compare with, we developed a

baseline with a simple solution to the problem that avoids material-

izing the 𝑘NN(·, ·) relation, as discussed in Section 3.2. The idea is

to first solve the extended BGP as a BGP, ignoring the similarity

clauses, and then postprocessing the solutions with the similarity

clauses. Our baseline also builds on the Ring for BGPs; it thus solves
the query in the following two phases:

(1) With the Ring, it computes the full solution to the query

without taking into account any similarity constraint.

(2) Then, it filters or extends the previous results by checking

the direct and reverse nearest neighbor graph. Both graphs

are represented as adjacency vectors in plain form.

Note that a clause 𝑥 ⊳𝑘 𝑦 where both 𝑥 and 𝑦 appear in other

triple patterns of 𝑄 will have both variables bound in the final

solution, and thus we only have to filter the solution by checking

whether 𝑦 ∈ 𝑘-NN(𝑥). Instead, if only one variable is bound, we

must extend the result with all the possible values of the other,

using the direct or the reverse graph. This may bind the variable of

another similarity clause, and so on. Our baseline does not support

similarity clauses that are disconnected from the rest of the query.

Filtering should be prioritized, as it may eliminate the solution

before wasting time extending it. For step 2, then, we first classify

the similarity clauses into 2-ready, ready and sim: the clauses 𝑥 ⊳𝑘 𝑦

where both 𝑥 and 𝑦 are bound are in 2-ready; those with one of

them bound are in ready; and those with both unbound are in sim.

We start filtering the results with the clauses in 2-ready, which
can preempt the whole query process if they fail. When 2-ready
becomes empty, we continue with ready, generating all the possible
values for the other variable by means of the stored 𝐾-NN graph.

When ready becomes empty, we continue with sim. We process first

the clauses that contain the variable that participates in most triples.

Note that when we extend a variable from sim, others can move to

ready. Therefore, every time we extend a variable, we update both

groups. The process finishes when all groups are empty.

Note that, in essence, the baseline corresponds to solving the

triples of the query and leaving all the similarity clauses to the end,

whereas our general technique fully incorporates those clauses into

the LTJ process, aiming at processing them at the best moment.

6 EXPERIMENTS
We compared our implementations on a benchmark we created for

this purpose, lacking any standard one. In this section we describe

the benchmark and the results of the comparisons, as well as some

experiments on the quality of our similarity operators.

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

6.1 Benchmark
We created a benchmark from a dataset that combines the Wikidata

graph [54] and IMGpedia [22], a linked-dataset that incorporates

images from the Wikimedia Commons dataset and their nearest

neighbor graph computed based on visual descriptors of the image

content. The identifiers of these images appear as nodes in the

Wikidata graph, for example, to indicate that a particular entity

(person, building, artwork, etc.) is depicted by a given image. Our

dataset contains 617, 065, 092 triples which, using 32-bit numbers

for the identifiers, occupies 6.9 GB. Additionally, storing the 𝐾-NN

graph for 𝐾 = 50 requires 5.3 GB of extra space. In total, our data

set occupies 12.2 GB in plain form.

Regarding queries, based on a real-world query log [12, 38], we

keep only those queries that involve some image, obtaining a total

of 2,942 queries. Note that those BGPs do not contain similarity

constraints. We aim to generate realistic extended BGPs by adding,

to those real queries, one or more similarity constraints between

image nodes. We extended the queries with different similarity

patterns in order to show different situations that affect query

evaluation performance, and use 𝑘 = 50 throughout. We obtain

a total of 1,470 queries, classified as follows (𝑞𝐴 denotes that 𝑞

contains, at least, the variables in the set 𝐴).

• Q1: contains 100 queries that join two queries by using the

operator 𝑥 ⊳𝑘 𝑦. Given two BGPs 𝑞{𝑥 } and 𝑞{𝑦} , where 𝑥 and

𝑦 are images, we produce the extended BGP 𝑞{𝑥 } ∪ {𝑥 ⊳𝑘
𝑦} ∪𝑞{𝑦} . The variant Q1b uses {𝑥 ∼𝑘 𝑦} instead of {𝑥 ⊳𝑘 𝑦}.

• Q2: contains 14 queries that join three queries by using the

operator 𝑥 ⊳𝑘 𝑦 twice in a path. Given BGPs 𝑞{𝑥 } , 𝑞{𝑦} , 𝑞{𝑧} ,
where the three variables are images, we produce 𝑞{𝑥 } ∪
{𝑥 ⊳𝑘 𝑦} ∪ 𝑞{𝑦} ∪ {𝑦 ⊳𝑘 𝑧} ∪ 𝑞{𝑧} . The variant Q2b replaces
unidirectional by bidirectional similarity operators. We omit

a third variant, Q2t, that closes the triangle with {𝑧 ⊳𝑘 𝑥},
because it gives almost the same results as Q2.

• Q3: contains 307 queries that extend a query with a trian-

gle involving similarity. Given a BGP 𝑞{𝑥,𝑦} that contains
(𝑥, 𝑝,𝑦), where 𝑦 is an image, we extend it with the patterns

{(𝑥, 𝑝,𝑦′), 𝑦 ⊳𝑘 𝑦
′}. We get close pairs 𝑦,𝑦′ related to 𝑥 by 𝑝 .

• Q4: contains 20 queries that extend a query as in Q3, but now
looking for 𝑦′ with all the properties of 𝑦. Given a query 𝑞𝑦
where 𝑦 is an image and participates in more than one triple

pattern (to avoid duplicating Q3), we add a new variable 𝑦′

and, for each triple pattern that mentions 𝑦, we add a copy

that mentions 𝑦′ instead. We finally add a clause 𝑦 ⊳𝑘 𝑦
′
.

• Q5: contains the same 307 queries of Q3, further extended
with a triple pattern (𝑦, 𝑙1, 𝑙2), where 𝑙1 and 𝑙2 are variables
that only participate in this triple (i.e., they are lonely). This

extracts all the information about 𝑦 for each pair 𝑦,𝑦′.

6.2 Results
The experiments were conducted on an Intel

®
Core

TM
i7-3820 CPU

@ 3.60GHz (4 cores) with 10MB of cache and 256 GB of RAM,

running Debian GNU/Linux 9 with kernel 4.9.0-8 (64 bits).

In space, both Ring variants need 12.15 GB to store the Ring and
the 𝐾-NN graph. This is almost the same space to store the raw

data (which our index replaces, as any edge of 𝐺 or of the 𝐾-NN

graph can be retrieved from the wavelet trees). The baseline uses

more space, 17.99 GB, as it stores the 𝐾-NN graph in plain form.

We evaluated the 1,470 queries on the baseline and our Ring
variants. All the queries are run with a timeout of 10 minutes and

without limiting the number of results. Figure 2 shows the query

time distributions using violin plots [30] (which show a symmetric

histogram of values along the 𝑦 axis) plus averages and medians.

Queries Q1. In these queries Ring-KNN is on average 15% faster

than the baseline. The queries have the form 𝑞{𝑥 } · 𝑥 ⊳𝑘 𝑦 · 𝑞{𝑦} , so
the baseline will fully compute 𝑞{𝑥 } and 𝑞{𝑦} and finally filter the

pairs (𝑥,𝑦) that do not satisfy the constraint. The Ring variants,

instead, may restrict the results earlier using the similarity clause.

Per Section 4, Ring-KNN cannot bind 𝑦 before binding 𝑥 , whereas

Ring-KNN-S is free to do so. This makes Ring-KNN-S 60% faster

than the baseline, and also significantly faster than Ring-KNN.
On Q1b, again per Section 4, Ring-KNN will not bind 𝑥 nor 𝑦

until the end, as they form a 2-cycle 𝑥 ∼𝑘 𝑦. Still, 𝑥 and 𝑦 are

always bound before the lonely variables, that is, Ring-KNN does

not compute all the results of 𝑞{𝑥 } · 𝑞{𝑦} , while the baseline does.
This makes Ring-KNN still 10% faster than the baseline on average.

Due to its flexibility, Ring-KNN-S still outperforms Ring-KNN by

60% on average. The difference in their plans is illustrated by the

fact that, on average, Ring-KNN-S and Ring-KNN bind the first

variable involved in a similarity constraint after processing 36%

and 68% of the variables, respectively.

A closer analysis of the time distribution reveals additional ben-

efits of the Ring-KNN plans, as its median is 40% lower than the

baseline. This means that, although there are bad cases that make

its average closer to that of the baseline, Ring-KNN solves many

queries faster. Ring-KNN-S times also distribute much better than

the baseline, with the medians being 2.6 times lower. The better

distribution of times for Ring-KNN and the even-better distribution

for Ring-KNN-S are observed in the violin plots.

Queries Q2. These queries feature two or three independent sim-

ilarity predicates between three variables, which the baseline is

forced to leave to the end. The average difference between Ring-
KNN and the baseline stretches to 55%, while Ring-KNN-S is now
only 12% faster than Ring-KNN on average. The fact that the me-

dian of Ring-KNN is “only” 20% faster than that of the baseline

shows that the former is also more stable. It is also more stable

than Ring-KNN-S, as the difference in their medians reaches 45%,

but in exchange the latter is considerably faster in most queries.

The violin plots clearly show that the guards of Ring-KNN sharply

limits the bad cases, which reach the timeouts for Ring-KNN-S.
Interestingly, there is little difference between Q2, where 𝑥 , 𝑦, and
𝑧 form a chain, and Q2t, where they form a triangle.

Both Ring variants worsen on the symmetric queries of Q2b. The
cycles force Ring-KNN to leave the three variables to the end (still

before the lonely ones), so its distance to the baseline decreases to

20% in average and 25% in medians. Ring-KNN-S is 10% faster than

Ring-KNN, but its median is worse by 13%. The violin plot shows

that, again, the variable ordering of Ring-KNN limits its worst cases;

the distribution is in general preferable to that of Ring-KNN-S.

Queries Q3. These queries represent a different situation, where
the similarity clause appears “in an extreme” of the query, instead

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

0

100

200

300

400

500

600

Ti
m

e
(s

ec
s)

Q1

0

100

200

300

400

500

600
Q1b

0

100

200

300

400

500

600
Q2

0

100

200

300

400

500

600
Q2b

0

20

40

60

80

100 Q3

0

20

40

60

80

Q4

0

20

40

60

80

100 Q5

Baseline Ring-KNN Ring-KNN-S

Figure 2: Query time distribution per query type (600 seconds is the timeout). The upper segment in each plot is the mean and
the lower is the median. The Baseline and Ring-KNN-S reach the timeout in Q3 and Q5.

of “in the middle” connecting two queries as in Q2. The baseline
generates and tests all the pairs 𝑦,𝑦′ where both are connected to

𝑥 by predicate 𝑝 . Ring-KNN can bind 𝑦 at any moment, and then

𝑦′. Ring-KNN-S, instead, binds 𝑦 and 𝑦′ with no restrictions.

As a result, Ring-KNN is 55% faster than the baseline on average,

and its median is also 25% lower. Interestingly, it is also 60% faster

than Ring-KNN-S on average, although the medians are nearly the

same. This shows that the query plans of Ring-KNN, which cares

about binding 𝑦 before 𝑦′, feature more stable times than those of

Ring-KNN-S, as it avoids some bad cases that worsen the average

of the latter. The violin plots clearly illustrate the better stability

and overall performance of Ring-KNN over Ring-KNN-S.

Queries Q4. In this case, 𝑦 and 𝑦′ are more densely connected to

the query than in Q3, which yields fewer candidate pairs to check

by the baseline, but more triple patterns to handle. In this query

Ring-KNN and Ring-KNN-S become more than 4 and 3 times faster

than the baseline on average, respectively. This is the only set of

queries that includes empty results, which is detected very early

by the Ring variants, but not by the baseline: the median of the

baseline is over 4 seconds, whereas those of the Ring variants are
3 · 10−5. We also note that Ring-KNN performs better than Ring-
KNN-S: 35% faster on average and with better worst cases, plus a

slightly more stable violin plot.

Queries Q5. The last type of query is designed specifically to

illustrate how bad a simple baseline that separates the similarity

clauses from the main query plan can perform, since it must pro-

duce all the instantiations of 𝑙1 and 𝑙2 before checking if 𝑦 satisfies

the similarity clause. As expected, the baseline is an order of mag-

nitude slower than the Ring variants. As in Q3, Ring-KNN clearly

outperforms the simple Ring-KNN-S, being 50% faster on average.

The distributions are similar (the median of Ring-KNN being only

7% lower), which again shows that Ring-KNN-S incurs many more

bad cases that raise its average. This is confirmed in the violin plots.

Summary. Our experiments demonstrate that incorporating the

similarity clauses in the main body of the LTJ query algorithm

performs much better than a naive strategy that uses LTJ over

triples as a black box and postpones the similarity checks until

the end. While the difference is moderate in simple cases (Q1), it

becomes more noticeable when the clauses are more connected to

the query (Q2, Q3), and it may become very sharp (Q4, Q5).
The comparison between the simple and the full Ring variants

also depends on the complexity of the query. In simpler cases (Q1),
Ring-KNN-S is more effective by exploiting the opportunity of

binding the variables involved in similarity clauses earlier. The full

Ring-KNN is slower in practice on those queries. In particular, the

cycles further restrict Ring-KNN’s plans and make it closer to the

baseline, as it must bind all the other non-lonely variables first. As

the queries get more complicated, however, with more similarity

constraints or with constraints involved in cycles (Q2 onwards), the
careful variable ordering of Ring-KNN protects it against bad cases

and makes it preferable over Ring-KNN-S. The latter is completely

outperformed in the more involved queries (Q3–Q5).

6.3 On the quality of the symmetric similarity
Per the possible unintuitiveness of the asymmetric operator 𝑥 ⊳𝑘 𝑦

for users, we introduced a symmetric version 𝑥 ∼𝑘 𝑦 that intersects

the results of 𝑥 ⊳𝑘 𝑦 and𝑦 ⊳𝑘 𝑥 . Implementing the symmetric version

brought a number of challenges, both theoretical (to achieve worst-

case optimality, Section 4.3) and practical (restricted query plans,

Section 6.2) . A natural question is about the quality of the results

obtained with this symmetric operator compared to the classic

𝑘-NN results. We present an experiment to address that question.

For this experiment, we use real datasets that serve as a ground

truth about which returned results are considered “good” or “bad”.

We use two different datasets for this purpose, which divide the

data into classes. We assume that a result returned from the same

class of the query is good, otherwise it is bad.

• Anuran Calls dataset [16, 17]: It consists of 7,195 vectors

of dimension 22, formed by audio features (Mel Frequency

Cepstral Coefficients or MFCCs) extracted from syllabes of

frog calls. There are 10 unbalanced classes in the dataset

(size of smaller class is 68, size of larger class is 3,478), each

corresponding to a different species of frogs.

• Dry Bean dataset [36, 37]: It consists of 13,611 vectors of

dimension 16, formed by features extracted from dry bean

grains. There are 7 unbalanced classes in the dataset (size

of smaller class is 522, size of larger class is 3,546), each

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

corresponding to a different class of beans. We normalized

linearly the values of each feature in the range [0, 1] .

We built the 𝐾-NN graph of both datasets, for 𝐾 = 100, using

Euclidean distance on the vectors, and then queried every object 𝑥

in each dataset for each value 𝑘 in {5, 10, . . . , 100}. For each query

object 𝑥 and value of 𝑘 , we performed queries according to four

strategies: (1) 𝑘-NN (labeled kNN and corresponding to 𝑥 ⊳𝑘 𝑦),

where we return the first 𝑘 neighbors 𝑦 of 𝑥 in the 𝐾-NN graph;

(2) reverse 𝑘-NN (labeled reverse and corresponding to 𝑦 ⊳𝑘 𝑥),

where we return those 𝑦 that list 𝑥 among their first 𝑘 neighbors

in the 𝐾-NN graph; (3) the intersection of 𝑘-NN and reverse 𝑘-NN

(labeled intersection and corresponding to 𝑥 ∼𝑘 𝑦); and (4) the

union of𝑘-NN and reverse𝑘-NN (labeled union, another symmetric

alternative to the intersection). For each dataset and 𝑘 , we average

the precision value (fraction of the elements returned that belong

to the same class of 𝑥) over all the query objects 𝑥 . The higher the

precision, the better is the quality of the operation.

Figure 3 shows the average precision for each strategy on both

datasets; see the four lines that reach 𝑘 = 100 for now. We observe

that the precision of the 𝑘-NN strategy diminishes with 𝑘 , which

is expected because a larger answer is more likely to contain ob-

jects from other classes (which lowers the precision). This is the

case of the other strategies as well, though some start growing for

low values of 𝑘 . The reverse 𝑘-NN strategy, although returning on

average 𝑘 answers, consistently displays less precision than that of

𝑘-NN. The same occurs with the union strategy, the other symmet-

ric option we disregarded. The intersection, instead, is competitive

with the 𝑘-NN strategy and outperforms it from some value of 𝑘

between 25 and 30, more markedly on the the Anuran Calls dataset.

Note that the strategy 𝑘-NN returns exactly 𝑘 objects, the reverse

strategy returns on average 𝑘 objects (and thus exactly 𝑘 objects

in our plots that query for all the objects), the intersection returns

at most 𝑘 objects, and the union returns at least 𝑘 objects. Thus

comparing them all for the same 𝑘 may be seen as unfair. The figure

then also shows the results for union and intersection classified

according to the average number of values returned by the queries.

The relative results are similar as before, although this time the

𝑘-NN strategy outperforms intersection on the Dry Bean dataset.

On both datasets, the difference on average precision comparing

equally-sized rankings is not so high: the maximum difference, for

𝑘 ≥ 10, is below 8% on the Anuran Calls dataset. These results evi-

dence that all tested similarity join strategies could be meaningful

and useful in practice. Still, kNN and intersection, the two we

implemented, perform consistently better (note also that union is
not as natural to support with LTJ as intersection). There is no
conclusive difference in quality between kNN and intersection.
While the 𝑥 ⊳𝑘𝑦 operation is more efficient, the 𝑥 ∼𝑘 𝑦 operator may

be more intuitive for some users. In particular, since the reverse
strategy is consistently worse than kNN, it turns out that the𝑦’s that
match each 𝑥 in the result of 𝑥 ⊳𝑘 𝑦 are of better quality that the 𝑥 ’s

that match each 𝑦; such an asymmetry also reduces intuitiveness.

7 DISCUSSION AND FUTUREWORK
Our theoretical results show that the acyclic queries are easily

solved in wco time by just taking the similarity constraints 𝑥 ⊳𝑘 𝑦 in

topological order. When the query has cycles, we could only prove

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 P

re
ci

si
o

n
 a

t
k

k

Anuran Calls dataset

kNN reverse intersection union eq.-sized - intersection eq.-sized - union

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0 20 40 60 80 100 120 140

A
v
e

ra
g

e
 P

re
ci

si
o

n
 a

t
k

k

Dry Bean dataset

kNN reverse intersection union eq.-sized - intersection eq.-sized - union

Figure 3: Average Precision@k for both datasets.

bounds for queries featuring one 2-cycle by binding its variables

at the end (save for lonely variables). Our algorithm Ring-KNN
extends this strategy to general queries, by never binding 𝑦 before

𝑥 if possible. While the general wco of this strategy is not estab-

lished, it proves to be superior in practice – for all but the simplest

cases – when compared with the basic Ring-KNN-S that treats the
constraints as any other triple. In simplest cases, Ring-KNN-S is

faster as it has more freedom to choose the binding order.

Our experiments also show that, though the symmetric operator

𝑥 ∼𝑘 𝑦 (which produces, precisely, 2-cycles) might be more intu-

itive than the basic asymmetric 𝑥 ⊳𝑘 𝑦 version, they are equivalent

in terms of retrieval quality (and better than another symmetric

operator defined as the union of 𝑥 ⊳𝑘 𝑦 and 𝑦 ⊳𝑘 𝑥). Our experiments

also show that the cost per delivered tuple is 2–5 times higher with

the symmetric operator with all Ring strategies. This situation leads
us to consider other ways to define a symmetric operator that is

equally intuitive and easier to handle algorithmically.

One choice, for example, is to interpret any similarity clause in

either direction, whichever appears to be more convenient at query

time. In particular, if the user does not specify the direction of a

similarity clause and the system can define it as 𝑥 ⊳𝑘 𝑦 or 𝑦 ⊳𝑘 𝑥 , we

SIGMOD ’24, June 9–15, 2024, Santiago, Chile Diego Arroyuelo, Benjamin Bustos, Adrián Gómez-Brandón, Aidan Hogan, Gonzalo Navarro, and Juan Reutter

can always make the query acyclic and solve it in wco time. Query

answers may differ slightly depending on which order is chosen, so

this approach can be seen as a way of producing faster, approximate

answers, akin to the technology used in vector databases to perform

similarity searches. Further setting the direction of the constraint

opens new avenues for query optimization, looking for the fastest

query plan regardless of its comparative quality.

Towards devising further similarity operators that can be pow-

ered with our algorithmic machinery, we will pursue eliminating

the need to specify 𝑘 at the low-level operations 𝑥 ⊳𝑘𝑦 or 𝑥 ∼𝑘 𝑦; the
query would instead ask for the 𝑘∗ “best” results, where the nodes
involved in similarity constraints are most similar. For example, in

the query {Chile ⊳3 𝑦, (𝑦, continent, Europe)}, which looks for Eu-

ropean countries similar (under some metric) to Chile, a user may

want to select the best three results, even if no European country

is among the 𝑘 = 3 countries most similar to Chile worldwide. In

order to enable this semantics, the system would increase the value

of 𝑘 until 𝑘∗ = 3 results are obtained.

ACKNOWLEDGMENTS
Funded by ANID – Millennium Science Initiative Program – Code

ICN17_002. A.G. is funded in part by MCIN/AEI/10.13039/5011000-

11033: grant PID2020-114635RB-I00 (EXTRACompact); by MCIN/A-

EI/10.13039/501100011033 and EU/ERDF "A way of making Europe":

PID2022-141027NB-C21 (EARTHDL); byMCIN/AEI/10.13039/501100011033

and “Next-GenerationEU”/ PRTR: grants TED2021-129245B-C21

(PLAGEMIS), PDC2021-120917-C21 (SIGTRANS) and byGAIN/Xunta

de Galicia: GRC: grants ED431C 2021/53, and CIGUS 2023-2026. G.N.

was funded in part by Fondecyt Grant 1-230755. J.R. was funded in

part by Fondecyt Grant 1221799.

REFERENCES
[1] M. Abo Khamis, H. Q. Ngo, and D. Suciu. Computing join queries with functional

dependencies. In Proc. 35th ACM Symposium on Principles of Database Systems
(PODS), pages 327–342, 2016.

[2] M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do Shannon-type inequalities,

submodular width, and disjunctive datalog have to do with one another? In Proc.
36th ACM Symposium on Principles of Database Systems (PODS), pages 429–444,
2017.

[3] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar. Distributed evaluation of

subgraph queries using worst-case optimal and low-memory dataflows. Proceed-
ings of the VLDB Endowment, 11(6):691–704, 2018.

[4] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc. Founda-

tions of modern query languages for graph databases. ACM Computing Surveys,
50(5):68:1–68:40, 2017.

[5] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing
Surveys, 40(1):1:1–1:39, 2008.

[6] D. Arroyuelo, A. Hogan, G. Navarro, J. L. Reutter, J. Rojas-Ledesma, and A. Soto.

Worst-case optimal graph joins in almost no space. In Proc. International Confer-
ence on Management of Data (SIGMOD), pages 102–114. ACM, 2021.

[7] D. Arroyuelo, G. Navarro, J. L. Reutter, and J. Rojas-Ledesma. Optimal joins using

compressed quadtrees. ACM Transactions on Database Systems, 47(2):8:1–8:53,
2022.

[8] B. Arsintescu. How LIquid connects everything so our members can do anything.

LinkedIn Engineering Blog, 2023. https://engineering.linkedin.com/blog/2023/

how-liquid-connects-everything-so-our-members-can-do-anything.

[9] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational

joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.
[10] R. Battle and D. Kolas. Enabling the geospatial Semantic Web with Parliament

and GeoSPARQL. Semantic Web, 3(4):355–370, 2012.
[11] B. R. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khandelwal, Y. Kiran, S. Mallidi,

B. McGaughy, M. Personick, K. Rajan, S. Rondelli, A. Ryazanov, M. Schmidt,

K. Sengupta, B. B. Thompson, D. Vaidya, and S. Wang. Amazon Neptune: Graph

data management in the Cloud. In Proc. ISWC Posters & Demonstrations, 2018.

[12] A. Bonifati, W. Martens, and T. Timm. Navigating the maze of Wikidata query

logs. In Proc. World Wide Web Conference (WWW), pages 127–138, 2019.
[13] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins

in data cleaning. In Proc. 22nd International Conference on Data Engineering,
(ICDE), page 5, 2006.

[14] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

[15] W.W. Cohen and H. Hirsh. Joins that generalize: Text classification usingWHIRL.

In Proc. 4th International Conference on Knowledge Discovery and Data Mining
(KDD), pages 169–173, 1998.

[16] J. Colonna, E. Nakamura, M. Cristo, and M. Gordo. Anuran Calls (MFCCs). UCI

Machine Learning Repository, 2017. DOI: https://doi.org/10.24432/C5CC9H.

[17] J. Colonna, T. Peet, C. A. Ferreira, A. M. Jorge, E. F. Gomes, and J. a. Gama. Auto-

matic classification of Anuran sounds using convolutional neural networks. In

Proc. 9th International C* Conference on Computer Science & Software Engineering
(C3S2E), page 73–78, 2016.

[18] A. Dashti, I. Komarov, and R. M. D’Souza. Efficient computation of k-nearest

neighbour graphs for large high-dimensional data sets on GPU clusters. PLOS
ONE, 8(9):1–12, 09 2013.

[19] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault,

W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt,

D. Vrgoc, M. Wu, and F. Zemke. Graph pattern matching in GQL and SQL/PGQ.

In Proc. International Conference on Management of Data (SIGMOD), pages 2246–
2258, 2022.

[20] M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher

dimensions. Computational Geometry, 5(5):277–291, 1996.
[21] W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction

for generic similarity measures. In Proc. 20th International Conference on World
Wide Web (WWW), page 577–586, 2011.

[22] S. Ferrada, B. Bustos, and A. Hogan. IMGpedia: A linked dataset with content-

based analysis of Wikimedia images. In Proc. 16th International Semantic Web
Conference (SWC), pages 84–93, 2017.

[23] S. Ferrada, B. Bustos, and A. Hogan. Extending SPARQL with similarity joins. In

Proc. 19th International Semantic Web Conference (ISWC), pages 201–217, 2020.
[24] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. Adopting

worst-case optimal joins in relational database systems. Proceedings of the VLDB
Endowment, 13(11):1891–1904, 2020.

[25] P. Fuchs, P. A. Boncz, and B. Ghit. EdgeFrame: Worst-case optimal joins for

graph-pattern matching in Spark. In Proc. 3rd Joint International Workshop on
Graph Data Management Experiences & Systems (GRADES) and Network Data
Analytics (NDA), pages 4:1–4:11, 2020.

[26] M. Galkin, M. Vidal, and S. Auer. Towards a multi-way similarity join operator.

In Proc. New Trends in Databases and Information Systems (ADBIS Short Papers
and Workshops), pages 267–274, 2017.

[27] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and

play with succinct data structures. In Proc. 13th International Symposium on
Experimental Algorithms (SEA), pages 326–337, 2014.

[28] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.

In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
841–850, 2003.

[29] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. Lin.

Real-time twitter recommendation: Online motif detection in large dynamic

graphs. Proceedings of the VLDB Endowment, 7(13):1379–1380, 2014.
[30] J. L. Hintze and R. D. Nelson. Violin plots: A box plot-density trace synergism.

The American Statistician, 52(2):181––184, 1998.
[31] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial

databases. In Proc. International Conference on Management of Data (SIGMOD),
pages 237–248, 1998.

[32] A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards fuzzy query-

relaxation for RDF. In Proc. Extended Semantic Web Conference (ESWC), pages
687–702, 2012.

[33] A. Hogan, C. Riveros, C. Rojas, and A. Soto. A worst-case optimal join algorithm

for SPARQL. In Proc. International Semantic Web Conference (ISWC), pages 258–
275, 2019.

[34] O. Kalinsky, A. Hogan, O. Mishali, Y. Etsion, and B. Kimelfeld. Exploration of

knowledge graphs via online aggregation. In Proc. 38th International Conference
on Data Engineering (ICDE), pages 2695–2708, 2022.

[35] C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A virtual

triple approach for similarity-based semantic Web tasks. In Proc. International
Semantic Web Conference (ISWC), pages 295–309, 2007.

[36] M. Koklu and I. A. Ozkan. Dry Bean Dataset. UCI Machine Learning Repository,

2020. DOI: https://doi.org/10.24432/C50S4B.

[37] M. Koklu and I. A. Ozkan. Multiclass classification of dry beans using computer

vision and machine learning techniques. Computers and Electronics in Agriculture,
174:article 105507, 2020.

[38] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. Getting the

most out of Wikidata: Semantic technology usage in Wikipedia’s knowledge

graph. In Proc. 17th International Semantic Web Conference (ISWC), pages 376–394,
2018.

https://engineering.linkedin.com/blog/2023/how-liquid-connects-everything-so-our-members-can-do-anything
https://engineering.linkedin.com/blog/2023/how-liquid-connects-everything-so-our-members-can-do-anything

Worst-Case-Optimal Similarity Joins on Graph Databases SIGMOD ’24, June 9–15, 2024, Santiago, Chile

[39] A. Mhedhbi, C. Kankanamge, and S. Salihoglu. Optimizing one-time and con-

tinuous subgraph queries using worst-case optimal joins. ACM Transactions on
Database Systems, 46(2):6:1–6:45, 2021.

[40] A. Mhedhbi and S. Salihoglu. Modern techniques for querying graph-structured

relations: Foundations, system implementations, and open challenges. Proceedings
of the VLDB Endowment, 15(12):3762–3765, 2022.

[41] I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 37–42, 1996.

[42] G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
[43] H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open

problems. In Proc. 37th ACM Symposium on Principles of Database Systems (PODS),
pages 111–124, 2018.

[44] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms.

Journal of the ACM, 65(3):16:1–16:40, 2018.

[45] D. T. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra.

Join processing for graph patterns: An old dog with new tricks. In Proc. 3rd
International Workshop on Graph Data Management Experiences and Systems
(GRADES), pages 2:1–2:8, 2015.

[46] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction of

k-nearest neighbor graphs in metric spaces. In Proc. 5th Workshop on Efficient
and Experimental Algorithms (WEA), pages 85–97, 2006.

[47] M. A. Sherif and A. N. Ngomo. A systematic survey of point set distance measures

for link discovery. Semantic Web, 9(5):589–604, 2018.
[48] Y. N. Silva, W. G. Aref, and M. H. Ali. The similarity join database operator. In

Proc. 26th International Conference on Data Engineering (ICDE), pages 892–903,
2010.

[49] T. Skopal and B. Bustos. On nonmetric similarity search problems in complex

domains. ACM Computing Surveys, 43:34:1–34:50, 2011.
[50] N. Tziavelis, D. Ajwani, W. Gatterbauer, M. Riedewald, and X. Yang. Optimal algo-

rithms for ranked enumeration of answers to full conjunctive queries. Proceedings
of the VLDB Endowment, 13(9):1582–1597, 2020.

[51] N. Tziavelis, W. Gatterbauer, and M. Riedewald. Beyond equi-joins: Ranking,

enumeration and factorization. Proceedings of the VLDB Endowment, 14(11):2599–
2612, 2021.

[52] P. Vaidya. An𝑂 (𝑛 log𝑛) algorithm for the all-nearest-neighbors problem. Dis-
crete & Computational Geometry, 4(2):101–116, 1989.

[53] T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proc.
International Conference on Database Theory (ICDT), pages 96–106, 2014.

[54] D. Vrandecic and M. Krötzsch. Wikidata: A free collaborative knowledgebase.

Communications of the ACM, 57(10):78–85, 2014.

[55] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable k-nn graph con-

struction for visual descriptors. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1106–1113, 2012.

[56] D. A. White and R. C. Jain. Similarity indexing with the SS-tree. In Proc. 12th
International Conference on Data Engineering (ICDE), pages 516–523, 1996.

[57] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric Space
Approach, volume 32 of Advances in Database Systems. Springer, 2006.

[58] X. Zhai, L. Huang, and Z. Xiao. Geo-spatial query based on extended SPARQL.

In Proc. International Conference on Geoinformatics (GEOINFORMATICS), pages
1–4, 2010.

[59] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu. Fast knn graph construction

with locality sensitive hashing. In Machine Learning and Knowledge Discovery in
Databases, pages 660–674. Springer, 2013.

	Abstract
	1 Introduction
	2 Leapfrog Triejoin and the Ring
	2.1 Graph databases and BGP matching
	2.2 Leapfrog Triejoin (LTJ)
	2.3 Fundamental operations on strings
	2.4 The Ring data structure

	3 LTJ with Similarity Joins
	3.1 Modeling similarity
	3.2 A basic idea
	3.3 Our solution

	4 Optimal Variable Orderings
	4.1 Size bounds for extended BGPs
	4.2 Queries with acyclic constraint graphs
	4.3 Queries with constraint cycles

	5 Implementation
	5.1 Ring-KNN-S
	5.2 Ring-KNN
	5.3 Baseline

	6 Experiments
	6.1 Benchmark
	6.2 Results
	6.3 On the quality of the symmetric similarity

	7 Discussion and Future Work
	Acknowledgments
	References

