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Abstract We propose techniques to evaluate regular path
queries (RPQs) over labeled graphs (e.g., RDF). We apply a
bit-parallel simulation of a Glushkov automaton represent-
ing the query over a ring: a compact wavelet-tree-based in-
dex of the graph. To the best of our knowledge, our approach
is the first to evaluate RPQs over a compact representation
of such graphs, where we show the key advantages of using
Glushkov automata in this setting. Our scheme obtains op-
timal time, in terms of alternation complexity, for traversing
the product graph. We further introduce various optimiza-
tions, such as the ability to process several automaton states
and graph nodes/labels simultaneously, and to estimate rele-
vant selectivities. Experiments show that our approach uses
3–5× less space, and is over 5× faster, on average, than the
next best state-of-the-art system for evaluating RPQs.
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1 Introduction

Many graph databases support regular path queries
(RPQs) [22] that match arbitrary-length paths satisfying a
regular expression over edge labels [4]. Fig. 1 shows a graph
representing an urban transport network, indicating stations
and the mode(s) of transport available between them (l1, l2

and l5 denote three metro lines). An RPQ x
(l1|l2|l5)+−−−−−−−→ y

returns all 25 pairs of stations that are reachable by metro:
x and y are node variables, while (l1|l2|l5)+ is a regular
expression matching paths of length one-or-more with

edges labeled l1, l2, or l5. An RPQ x
l1+|l2+|l5+−−−−−−−−→ y rather

returns the 19 pairs of stations that are reachable via metro
without changing line. We can also replace node variables

with constants, where Los Heroes
l2/bus∗−−−−→ y returns 3

stations reachable from Los Heroes via one leg of line 2,
followed by zero-or-more bus legs.

While RPQs were proposed in the 80’s [22, 49], a
key milestone was the inclusion of property paths [43] in
SPARQL 1.1 [38], that is, RPQs extended with inverse
labels (known as two-way regular path queries (2RPQs))
and negated label sets. Of 208 million SPARQL queries
in publicly-available logs from the Wikidata Query Ser-
vice [46], 24% use at least one RPQ feature [15]. Later
graph query languages followed suit, adding support for
RPQ-like features [67, 4, 30, 5, 23, 24]. These developments
necessitate techniques to evaluate RPQs efficiently.

A classical approach to evaluate RPQs is to represent the
regular expression as an automaton and search over its prod-
uct with the data graph, which is expanded lazily [49]. Re-
cent approaches further propose using recursive queries [73,
74, 40], parallelism [50], distribution [58, 72, 21, 48, 37],
specialized indexes [36, 29, 44, 45], multi-query optimiza-
tion [2], approximation [70], just-in-time compilation [64],
etc., to reduce runtimes for evaluating RPQs.
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Fig. 1 Santiago metro stations with metro lines and buses

Our Contribution: We propose techniques to evaluate
2RPQs over a ring [7]: a compact index that represents the
graph, and can support join queries (a.k.a. basic graph pat-
terns [4]) in worst-case optimal time using space close to a
plain representation of the graph. The ring uses a Burrows–
Wheeler Transform (BWT) [18] to convert the graph into
a sequence that is then encoded as wavelet trees [35]. The
technique we propose for evaluating RPQs over a ring
combines (1) BWT’s backward search capabilities [27];
(2) the ability of the wavelet trees to work efficiently on
ranges of nodes or edge labels; and (3) the regularity of
the Glushkov automaton [34] for the regular expression
and the versatility of its bit-parallel simulation [56]. The
resulting algorithm traverses the product subgraph induced
by the query optimally in terms of the so-called alternation
complexity [11]. Furthermore, our algorithm can search
over several paths in the product graph simultaneously. To
support RPQs, our data structure uses space close to a com-
pact representation; to support 2RPQs, the space doubles.
Experiments show that for 2RPQs we use 3–5 times less
space than competing databases, and are on average 2.8×
faster than the nearest system: Blazegraph [65].

In this extended version of our conference paper [8], in
addition to analyzing our algorithm in terms of the alterna-
tion complexity, we explore a number of optimization tech-
niques to further improve performance. The first such tech-
nique better exploits the wavelet trees’ ability to work effi-
ciently over ranges of nodes and labels by dictionary encod-
ing constants using a BFS order that aims to consolidate the
ranges encountered while traversing the graph. With this op-
timization, our algorithm becomes 5.1× faster than Blaze-
graph. A second key optimization technique is based on the
idea of splitting complex regular expressions at some selec-
tive intermediate point [42, 58, 72, 74, 57, 50] by efficiently
counting the number of nodes that can be matched with in-
termediate automaton states. By roughly doubling the space
of our basic representation (which is still 1/2–1/3 that of the
other systems), this second optimization further speeds up
the index on complex RPQs by 3.7× on average, and by 20×
considering median times. These improvements are demon-
strated by additional experiments involving a new data- and
query-set based on YAGO2s [13, 74], extending previous re-
sults over Wikidata [69].

2 Related Work

We present related work on efficiently evaluating RPQs, and
RPQ-like fragments such as property paths in SPARQL 1.1.

Evaluating path queries: Techniques for evaluating RPQs
can be loosely divided into navigational (graph-based) and
relational (table-based) approaches. The former approaches
may invoke graph search algorithms (BFS, DFS, etc.), while
the latter approaches may rather invoke recursive joins and
other relational operators. As seen later, both approaches
end up being largely analogous, and/or can be combined.

Given an RPQ x
e−→ y, a natural navigational approach

is to start at nodes matching x, and for each one, try to nav-
igate paths outwards (using BFS, DFS, etc.) that match the
regular expression e, reporting nodes reached at the end of
matching paths as y. Conversely, we might rather opt to start
at y, if, for example, y is constant and x is variable. But for
some RPQs, the regular expression may give us strong hints
that it would be more efficient to start in the “middle”, ef-
fectively splitting the RPQ into two sub-RPQs that are later
joined. Koschmieder and Leser [42] propose to split an RPQ
by its rare labels – i.e., labels with fewer than m edges – in
order to ensure more selective start/end points, where the
splits are later joined. Nolé and Sartiani [58] evaluate RPQs
using the concept of Brzozowski derivatives, whereby the
regular expression is rewritten based on the symbols already
read such that the rewritten expression matches suffixes that
complete the path. Wang et al. [72] evaluate RPQs based on
partial answers that can be connected, allowing for these
answers to not only be prefixes, but also infixes and suffixes.
Nguyen and Kim [57] split RPQs similarly to the rare la-
bels strategy, but rather attempt to minimize the cost of the
most costly sub-RPQ resulting from the split. Wadhwa et al.
[70] compute approximate RPQ results using bidirectional
random walks from the source and target node.

An alternative direction is to rather view the graph as a
single relation of the form G(s, p, o), or a set of binary rela-
tions of the form pi(s, o), . . . , pn(s, o), and translate an RPQ
into recursive relational operators. Dey et al. [25] evaluate
RPQs using either Datalog rules or recursive SQL queries.
Yakovets et al. [73] translate SPARQL property paths into
recursive SQL queries. Jachiet et al. [40] propose an ex-
tended relational algebra with a fixpoint operator capable of
expressing RPQs. Fionda et al. [28] propose extended prop-
erty paths – including difference and intersection of paths,
custom constraints on nodes along the path, etc. – that are
compiled into recursive SPARQL queries.

Seeing both navigational and relational approaches as
complementary, Yakovets et al. [74] propose hybrid “wave-
plans” that enable novel query plans not possible in either
base approach. Abul-Basher [2] propose an extension called
“swarmguide” for optimizing multiple RPQs at once.
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Recent approaches leverage acceleration techniques.
Miura et al. [50] exploit field programmable gate arrays
(FPGAs) to split and evaluate RPQs in parallel. Tetzel et al.
[64] compile RPQs into C++ code that evaluates them.

Other authors propose specialized indexes for RPQs.
Gubichev et al. [36] design an index called FERRARI [63]
that encodes the transitive closure of edges with the same la-
bel as node intervals. Wang et al. [71] propose a specialized
indexing scheme on edge labels to evaluate RPQs. Fletcher
et al. [29] propose a k-path index that indexes all paths of
length at most k in a B+-tree. Kuijpers et al. [44] then use
k-path indexes to optimize RPQs over Neo4j, while Liu
et al. [45] populate k-path indexes with frequent paths.

Other settings: While our focus is on evaluating RPQs over
a static graph on a single machine, we can briefly mention
that other works have looked at evaluating RPQs on graphs
partitioned over multiple machines [58, 72, 21, 48, 37], web-
sites [10, 39], or temporal windows [59].

RPQ fragments: Some works focus on fragments of RPQs,
such as label-constrained reachability queries (LCRs) [41],
which match paths of arbitrary length such that each edge la-
bel on the path is in a given set {p1, . . . , pn}, corresponding

to RPQs of the form x
(p1|...|pn)

∗

−−−−−−−→ y [66], which are com-
mon in practice [15, 16]. Specialized indexes for LCRs have
been proposed, encoding tuples of the form (u, v, L) such
that node v is reachable from node u via a path whose edges
only use labels from the set L, often such that L is mini-
mal [41, 75, 66, 60, 61]. Since such tuples can be great in
number, often only a subset are indexed. Jin et al. [41] com-
bine a spanning tree and a partial index of the transitive clo-
sure from which the full closure can be computed. Zou et al.
[75] propose to decompose and build separate LCR indexes
for each (strongly connected) component. Valstar et al. [66]
construct a partial LCR index that is complete for k “land-
mark” vertices with highest degree. Peng et al. [60] propose
a pruned LCR index inspired by 2-hop labeling, which al-
lows a tuple (u, v, L) to be pruned from the index if covered
by joining two other tuples in the index. Other works have
explored distance-aware variants of LCRs, including label-
constrained shortest path queries (LCSPs) [14]; and label
constrained k-reachability queries (LCKRs) [61].

Novelty: We introduce a novel technique to evaluate
(2)RPQs that is efficient both in time and space. To the best
of our knowledge, our approach is the first that evaluates
RPQs on a compressed representation of the graph, and the
first to show key advantages of using Glushkov automata
[34] in this setting: not only does it enable a more space-
efficient bit-parallel simulation of the automaton [56], its
transitions exhibit a regularity that is crucial for efficiently
evaluating RPQs. The combination of the backward search

capabilities of the BWT [18], the ability of the wavelet trees
[35] to work on ranges of nodes/labels, and the regularity
of Glushvov’s automaton, allow us to find the needed edges
of the product graph in optimal time. The bit-parallel
simulation, with access to ranges of nodes and labels, fur-
ther enables processing sets of nodes of the product graph
simultaneously, speeding up the classical strategy. The use
of wavelet trees further opens up some novel optimization
possibilities that we explore in this extended version. First,
we can take advantage of the efficient processing of ranges
by adopting a dictionary encoding of constants that consoli-
dates ranges found during a BFS-style navigation. Second,
we show how wavelet-tree-like structures can support effi-
cient and accurate computation of the selectivities needed to
decide whether or not (and where) to split an RPQ, allowing
us to implement this optimization as proposed by previous
works with little space cost [42, 58, 72, 74, 57, 50].

3 Key Concepts

3.1 Graphs and Regular Path Queries

Let Σ denote a set of symbols. We start by defining the di-
rected labeled graphs that encode our data as sets of triples.

Definition 1 We define a (directed edge-labeled) graph
G ⊆ Σ × Σ × Σ to be a finite set of triples of symbols
of the form (s, p, o), denoting (subject,predicate,object).
Each triple of G can be viewed as a labeled edge of the
form s

p−→ o. Given a graph G, we define its nodes as
V = {x | ∃ y, z, (x, y, z) ∈ G ∨ (z, y, x) ∈ G}.

We now define paths in such graphs.

Definition 2 A path ρ from x0 to xn in a graph G is a string
of the form x0 p1 x1 . . . pn xn such that (xi−1, pi, xi) ∈ G

for 1 ≤ i ≤ n. Abusing notation, we may write that ρ ∈
G if ρ is a path in G. Given a path ρ, we call word(ρ) =

p1 . . . pn ∈ Σ∗ the word of ρ.

We reuse the concept of regular expressions, with a
slightly adapted syntax that is more popular for RPQs [38].

Definition 3 A regular expression is defined inductively as
follows. First, ε and any element of Σ are regular expres-
sions. Furthermore, if E,E1 and E2 are regular expressions,
then E∗ (Kleene star), E1/E2 (concatenation) and E1|E2

(disjunction) are also regular expressions. We may further
abbreviate E∗/E as E+, and ε|E as E?.

Two-way RPQs (2RPQs) also allow for traversing edges
in the inverse direction. This is formalized as follows.

Definition 4 We denote by ˆΣ = {ˆs | s ∈ Σ} the inverses
of symbols in Σ, and by Σ↔ = Σ ∪ ˆΣ the set of symbols
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and their inverses. We assume that Σ ∩ ˆΣ = ∅ and that
s = ˆ(ˆs). We call ˆG = {(y, ˆp, x) | (x, p, y) ∈ G} the
inverse of a graph G, and G↔ = G ∪ ˆG the completion of
G. If E is a two-way regular expression, then so is ˆE.

For our purposes, a two-way regular expression over Σ
is simply a regular expression over Σ↔. The conversion is
easily done by pushing the inversion symbol to the leaves,
using the rules ˆ(E∗) = (ˆE)∗, ˆ(E1/E2) = ˆE2/ˆE1,
ˆ(E1|E2) = ˆE1|ˆE2, and ˆε = ε. We now define the con-
cept of matching a regular expression in a graph.

Definition 5 A path ρ matches a regular expression E iff
word(ρ) ∈ L(E), where L(E) denotes the language of E.

We now define regular path queries, which specify a reg-
ular expression and conditions or variables to bind in the
extremes of the matching paths.

Definition 6 Let Φ denote a set of variables. Let µ : Φ →
Σ denote a partial mapping from variables to symbols. We
denote the domain of µ as dom(µ), i.e., the set of variables
for which µ is defined. If E is a regular expression, s ∈
Φ ∪Σ and o ∈ Φ ∪Σ, then we call (s, E, o) a regular path
query (RPQ). Let xµ be defined as µ(x) if x ∈ dom(µ), or
x otherwise. We define the evaluation of (s, E, o) on G as:

(s, E, o)(G) = {µ | dom(µ) = {s, o} ∩ Φ and there exists a
path ρ from sµ to oµ in G matching E}.

Example 1 Take the graph G of Fig. 1 and the RPQ
(x, (l1|l2|l5)+, y), where x, y ∈ Φ are variables. Infinitely
many paths in G match (l1|l2|l5)+, including:

UCh
l1−−−→ LH

l1−−−→ UCh
UCh

l1−−−→ LH
l1−−−→ UCh

l1−−−→ LH
Baq

l1−−−→ UCh
l1−−−→ LH

l2−−−→ SA

and so forth (abbreviating node labels). The evaluation of
the RPQ on G will return all mappings such that x maps to
the start node of some such path, and y maps to the end node
of the same path. For example, from the first path, we will
return a solution µ such that µ(x) = UCh, µ(y) = UCh. ⊓⊔

When E is a regular expression over Σ↔ (i.e., a two-
way regular expression over Σ), we call (s, E, o) a two-way
regular path query (2RPQ), and its evaluation is defined on
G↔ instead of G. We will speak of RPQs and 2RPQs indis-
tinctly, assuming the corresponding alphabet and graph.

3.2 Product Graph

A key approach for evaluating an RPQ (s, E, o) on G

uses the product graph GM(VM, AM) of G and a non-
deterministic finite automaton (NFA) M of E [49]. Let
M = (Q,Σ,∆, q0, F ) be an NFA, built for example with

Thompson’s construction, where Q denotes the set of states,
∆ ⊆ Q× (Σ ∪ {ε})×Q the transitions, q0 ∈ Q the initial
state, and F ⊆ Q the set of accepting states. Then we build
GM from G andM as follows.

Definition 7 Let M = (Q,Σ,∆, q0, F ) be an NFA and
G be a labeled graph with labels in Σ and nodes in V ,
then the product graph of G and M is a directed graph
GM(VM, AM) with nodes VM = V ×Q and edges

AM = {((x, q), (y, p)) | ∃ l : (x, l, y) ∈ G ∧ (q, l, p) ∈ ∆}
∪ {((x, q), (x, p) | x ∈ V ∧ (q, ε, p) ∈ ∆}. (1)

The RPQ can then be evaluated using graph search (e.g.,
BFS or DFS) to find paths in the product graph GM that
start from some node (x, q0) ∈ VM and end in some node
(y, qf ) ∈ V × F (where x = s if s ∈ Σ, and y = o if
o ∈ Σ). Each traversal strategy we use on GM for a given
query induces a subgraph G′

M of GM, as follows.

Definition 8 Given a traversal strategy of the product graph
to solve RPQs, the induced subgraph of an automatonM on
a graph G is the subgraph G′

M(V ′
M, A′

M) of GM induced by
the nodes V ′

M visited by the traversal and all the edges A′
M

that connect nodes of V ′
M.

3.3 Cost Models

Per Def. 8, we say that a traversal strategy determines
the induced subgraph G′

M – that is, the set of nodes to tra-
verse in order to solve the query – but not how to compute
G′
M. A corresponding traversal algorithm implements the

traversal strategy, computing G′
M from GM. The number

|A′
M| of edges in the induced subgraph is arguably a lower

bound on the time complexity of the traversal algorithm.
This lower bound would be reachable only if the algorithm
could guess, in optimal time, which are the edges in AM,
leaving every node in V ′

M, that belong to A′
M.

Actual traversal algorithms require more time than this
lower bound. For example, an algorithm that at every node
(x, q) ∈ V ′

M verifies each possible label l of an edge leaving
from x ∈ V , to see if it leads from state q ∈ Q to some state
p ∈ Q (cf. Eq. (1)), incurs a cost of at least |labG(x)|, where

labG(x) = {l | ∃ y : (x, l, y) ∈ G}.

The total cost of such a traversal algorithm is then CostG =∑
(x,q)∈V ′

M
|labG(x)|, multiplied by the time it takes to de-

termine where a label leads in M. Instead, an algorithm
that verifies, from (x, q) ∈ V ′

M, every possible symbol l
leading somewhere inM from q, to see if there is an edge
(x, l, y) ∈ G, incurs a cost of at least |labM(q)|, where

labM(q) = {l | ∃ p :M has a path from q to p consuming l}.
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The total cost of such a traversal algorithm is then CostM =∑
(x,q)∈V ′

M
|labM(q)|, multiplied by the time it takes to de-

termine where a label leads in G. A clever algorithm choos-
ing the smaller of both at each node of V ′

M could obtain at
best CostGM =

∑
(x,q)∈V ′

M
min(|labG(x)|, |labM(q)|).

Per Eq. (1), what we need to compute in every node
(x, q) ∈ V ′

M is the intersection labG(x) ∩ labM(q). The
costs just derived correspond to particular ways to compute
that intersection. A lower bound to the number of compar-
isons needed to compute an intersection is given in terms of
the so-called alternation complexity, defined next.

Definition 9 [11] The alternation complexity α(X,Y ) be-
tween sets X and Y is the minimum number of times we
must switch from one to the other in an ordered traversal, so
as to enumerate X ∪ Y .

For example, consider the sets X = {1, 2, 5, 6, 7, 9, 10,
13, 14} and Y = {3, 4, 6, 7, 8, 9, 10, 11, 12}. Their union is
X∪Y = {1, . . . , 14}, their intersection is X∩Y = {9, 10},
and α(X,Y ) = 4, because we can traverse X ∪ Y with 4

switches between X and Y , for instance as follows:
1 2 5 6 7 9 10 13 14

3 4 6 7 8 9 10 11 12

The alternation complexity yields the following lower
bound on the cost of intersecting two sets:

Lemma 1 [11] If the elements of X and Y belong to a uni-
verse of size U , then α(X,Y ) log U

α(X,Y ) is a lower bound
to the cost of intersecting X and Y .

It is easy to see that α(labG(x), labM(q)) lower bounds
2min(|labG(x)|, |labM(q)|), and it could be much lower.
For example, if labG(x) has k elements, all smaller than the
k elements of labM(q), then min(|labG(x)|, |labM(q)|) =

k, but α(labG(x), labM(q)) = 1. A better lower bound for
the cost of a traversal algorithm is then:
CostA =

∑
(x,q)∈V ′

M
α(labG(x), labM(q)) ≤ CostGM .

Per Lemma 1, a lower bound for any traversal algorithm
that builds G′

M is then alt(G′
M, U), a shorthand for∑

(x,q)∈V ′
M

α(labG(x), labM(q)) log
U

α(labG(x), labM(q))
. (2)

The cost of our algorithm, interestingly, will be upper
bounded by Eq. (2). The reason is that we will manage to
process several nodes of VM simultaneously. This is ob-
tained by combining Glushkov automata (which yields au-
tomataM with small sets labM(q)), bit-parallelism (which
processes together several states of M), and the ring data
structure (which processes together several nodes of G); all
those are described next.

3.4 Glushkov Automaton

Glushkov [34, 12] proposed an alternative to the more
popular Thompson’s construction for building an NFA

3

2

1

/

/

*

b

b

a

Fig. 2 The syntax tree of the regular expression E = a/b∗/b, indicat-
ing the positions of leaves.

[0000] = 0000T  

T  

T  

[0001] = 0000

[0010] = 0011

[0011] = 0011

. . . 

T [1111] = 0111

T  

T  [0100] = 0011
B  

B  

F = 0001

[a] = 0100

[b] = 0011

0 31 2

b

b

ba b

Fig. 3 The Gluskov automaton of the regular expression a/b∗/b, and
its bit-parallel representation on the bottom.

from a regular expression E. The bit-parallel simulation
of Glushkov’s construction has been shown to be more
efficient than Thompson’s, and also than classical DFA
constructions when the regular expressions are small [56].
Since this is the case for most RPQs in practice (in particu-
lar, of all those we found in real query logs) we have chosen
the bit-parallel simulation of Glushkov’s NFA for our index.

Let E have m occurrences of symbols in Σ. Its syntax
tree then has m leaves that represent symbols of Σ. We say
that the kth left-to-right leaf corresponding to some c ∈ Σ

represents the position k of E, and we say pk = c. The
algorithm creates an NFA of m + 1 states, one per position
plus the initial state 0.

Example 2 Fig. 2 shows the syntax tree of the regular ex-
pression E = a/b∗/b. It has three positions, with p1 = a,
p2 = b, and p3 = b. The corresponding NFA is shown on
the top of Fig. 3. ⊓⊔

Compared to Thompson’s construction of an NFA from
E, Glushkov’s has the disadvantage of generating Θ(m2)

transitions in the worst case, and needing O(m2) construc-
tion time [17]. In exchange, it has various useful properties:

1. The NFA has no ε-transitions.
2. The NFA has exactly m + 1 states (numbered 0 to m),

which is worst-case optimal.
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3. All the transitions arriving at state k > 0 have the label
pk, while no transition leads to state 0.

These properties imply the following fact [56], which
leads to yet another advantage of using Glushkov’s construc-
tion, as we see in the following.

Fact 1 In a Glushkov NFA, the states reached in one step
from a set X of states by symbol c are the intersection of
those reached from X in one step and those reached by c

from any state.

Example 3 Consider again the top of Fig. 3 and take the
states X = {0, 2}. The states reachable from X in one step
via b are {2, 3}, that is, the intersection of {1, 2, 3} reachable
in one step from X via any symbol and {2, 3} reachable in
one step via b from any state. ⊓⊔

3.5 Bit-parallel Glushkov Automata

Fact 1 enables a particularly efficient bit-parallel simulation
of the NFA [56]. This simulation represents the NFA states
as a sequence of bits, so each configuration of active and in-
active states (bits set to 1 and 0, respectively), correspond
to a state in the DFA according to the classic powerset con-
struction. The simulation operates on the states in parallel by
using the classic arithmetical and logical operations on com-
puter words. Assume that the alphabet is an integer range
Σ = [1 . . σ]. The simulation uses the following variables:

– A bit sequence D of length m+1 tells, at every step, the
active NFA states, as discussed. Assume the initial state
corresponds to the leftmost bit.

– A table B[1 . . σ] of bit sequences indicates with 1s, at
each B[c], the states targeted by transitions labeled c.

– A table T [0 . . 2m+1−1] stores in T [X], for each possible
(m+ 1)-bit argument X representing a set of states, the
states reachable from X in one step by any symbol.

– A bit sequence F marks with 1s the final NFA states.

The automaton can be used, in particular, to traverse a
sequence and report all (the ending positions of) its prefixes
matching a word in the language accepted by the NFA. The
bit-parallel simulation is as follows:

1. We set D ← 10m (a 1 followed by m 0s) to activate the
initial state, and start the scan from position zero.

2. If D & F ̸= 0m+1, we have reached a final state and re-
port the current position (where ‘&’ is the bitwise-and).

3. If D = 0m+1, we have run out of active states and finish.
4. We read a new input symbol c and use Fact 1 to update

D as follows, so the new active states are those reachable
from the current ones and by symbol c:

D ← T [D] & B[c]. (3)

5. Return to point 2.

Example 4 The Glushkov automaton of a/b∗/b and its
bit-parallel representation are shown in Fig. 3. Given
a string S = abba, we initialize D ← 1000 with the
initial state 0 activated. We read S[1] = a and up-
date D ← T [1000] & B[a] = 0100 & 0100 = 0100,
activating state 1. We read S[2] = b and update
D ← T [0100] & B[b] = 0011 & 0011 = 0011, ac-
tivating states 2 and 3. We report here the endpoint of
a match since D & F = 0011 & 0001 ̸= 0000. To
find other endpoints, we next read S[3] = b and update
D ← T [0011] & B[b] = 0011 & 0011 = 0011, reporting
this position as well. Finally, we read S[4] = a and update
D ← T [0011] & B[a] = 0011 & 0100 = 0000. At this
point we run out of active states and finish. ⊓⊔

A similar simulation can be used to read the text in re-
verse [56] by building a table T ′[0 . . 2m − 1] where T ′[X]

marks with 1s the states that can reach a state in X in one
step, initializing D ← F and, for each symbol c, updating

D ← T ′[D & B[c]], (4)

and accepting when D & 2m ̸= 0.
Bit-parallelism uses the RAM model of computation,

where all the arithmetical and logical operations over a w-bit
word take constant time; it is usual to assume w = Θ(log n),
where n is the data size. In our case, if m + 1 ≤ w, we can
use a single computer word to hold each bit sequence. In this
case, the space of the simulation is O(2m+σ) words, instead
of the worst-case O(2mσ) of a classic DFA implementation.
The tables are built in time O(2m) [56] if we use lazy initial-
ization for B. Current computer words with w = 64 make
this to be the case with most RPQs found in practice.

If m + 1 > w, then we need to use ⌈(m + 1)/w⌉ com-
puter words to hold D, F , and every entry of B and T . In this
case, all the time and space complexities get multiplied by
O(m/w). If we want to avoid the exponential space and time
O(2m), we can split table T vertically into ⌈(m+ 1)/d⌉-bit
subtables T1, . . . , Td, so that if we partition X = X1 · · ·Xd,
then T [X] = T1[X1] | · · · | Td[Xd], where “|” denotes the
bitwise-or. This reduces the space to O(d 2m/d+σ) and fur-
ther multiplies time by O(d), for any desired 1 ≤ d ≤ m+1

[56]. We assume for simplicity that m = O(w) and use
O(2m) space in the paper, but in Theorem 1 we recall that
we can curb the exponential space.

Rather than using bit-parallelism to simulate the DFA,
we use it to traverse the product graph while acting on sev-
eral NFA states simultaneously (e.g., we may have a set of
active NFA states that do not correspond to any DFA state in
the classic powerset construction). This corresponds to act-
ing on several nodes of the product graph simultaneously.
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Fig. 4 Triples representing the completion of the graph of Fig. 1,
adding a reverse edge labeled ˆbus for each edge labeled bus (l1,
l2 and l5 are considered bidirectional). Three rotations of triples are
shown; the last column in each rotation forms a component of the ring.

3.6 The Ring

The ring [7] is a recently proposed representation for a set
of triples (s, p, o), supporting worst-case optimal joins [68].
It regards triples with different rotations, (s, p, o), (p, o, s),
or (o, s, p). What the ring actually stores are the numeric
identifiers of objects, subjects, and predicates of the triples
separated into three sequences, Lo, Ls, and Lp, respectively,
as follows; the sortings are done on the numeric identifers.

Definition 10 The ring of a graph G formed by n triples of
the form (s, p, o) consists of three sequences:

– Lo[1 . . n] enumerates the objects o from the list of the
lexicographically sorted triples (s, p, o).

– Ls[1 . . n] enumerates the subjects s from the list of the
lexicographically sorted triples (p, o, s).

– Lp[1 . . n] enumerates the predicates p from the list of
the lexicographically sorted triples (o, s, p).

The concatenation Lo · Ls · Lp is analogous to the
Burrows–Wheeler Transform (BWT) [18] of the concatena-
tion of all triples in the graph [7].

Example 5 Fig. 4 shows the triples for the completion of
the graph of Fig. 1, using abbreviated node labels. On the
right we map node and edge labels to integer numbers, and
sort according to those numbers. The leftmost rotation lists
triples sorted by (s, p, o); the last column (o) of this rotation
forms the sequence Lo. The middle rotation sorts triples by
(p, o, s), and its last column (s) forms the sequence Ls. Fi-
nally, the rightmost rotation sorts the triples by (o, s, p) and
its last column (p) forms Lp. The ring is then the tuple of the
three sequences, Lo, Ls and Lp.

With this arrangement, a range in Lo corresponds to a
lexicographic interval of triples (s, p, o) wherein a range
may represent all the triples with a specific subject s (i.e.,

BALH UCh Baq SA UCh UCh BA

UCh LHBaqLH BA SA BaqSA BAUCh BA SA UCh UCh BA SA

SA UCh LH BA Baq

SA UCh LH BA Baq

l5 busl2 ^bus l1 l2l1 l1bus l5 ^bus bus l5 l1 l5^bus

0 16141084

5
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4
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UCh
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Baq
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1

4
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3 5 2 2 3 1 4 1 5 4 4 1 2 2 4 1

SA

3 4 2 4 3 5 4 1 2 1 1 5 1 2 2 4

SA

2 3 4 4 1 5 1 2 1 3 5 4 3 1 35

SAUCh LHBA BABaq

l1 l2 l5 bus ^bus

=

=

=

=

Lo

Lp

L s

Co

Fig. 5 The ring for the completion of the graph of Fig. 1, adding a
reverse edge labeled ˆbus for each edge labeled bus (l1, l2 and l5 are
bidirectional). We also show how the last triple in Lp is tracked.

starting with s), and a smaller range may represent all
the triples with subject s and predicate p (i.e., starting
with (s, p)). A range in Lo can also represent a range of
subjects sb . . se, and even a subject s followed by a range of
predicates ps . . pe. Analogously, ranges in Ls correspond to
lexicographic intervals of triples (p, o, s) and ranges in Lp

correspond to lexicographic intervals of triples (o, s, p). In
the three strings, the range [1 . . n] represents all the triples
and a range of size 1 represents an individual triple.

Example 6 In Fig. 4, the range of positions [5 . . 8] of Lo

corresponds to the triples (s, p, o) where s = UCh, and the
smaller range [5, 6] to the triples (s, p, o) where s = UCh
and p = l1. If we need a range for the triples where p = l5
and o = BA, we instead use the range [8 . . 9] of Ls, which
is sorted in order (p, o, s). ⊓⊔

The ring retrieves triples using LF-steps [27], which
we now define on array Lp (and analogously on Ls and
Lo). Given a position i and the symbol c = Lp[i], let Cp[c]

count occurrences of symbols smaller than c in Lp, and
rankc(Lp, i) count occurrences of the symbol c in Lp[1 . . i].
The corresponding LF-step returns the position in Ls of the
subject associated with the predicate c, as follows:

LFp(i) = Cp[c] + rankc(Lp, i). (5)

The subject of the triple corresponding to the predicate
at Lp[i] is Ls[i

′] for i′ = LFp(i), and the object is Lo[i
′′] for

i′′ = LFs(i
′). We close the cycle with i = LFo(i

′′), where
the predicate is (again) at Lp[i].

Example 7 Fig. 5 shows the ring of Fig. 4, now directly as
sequences Lo, Ls, and Lp of integers. We write the abbrevi-
ated names over the numbers for readability. Note that, for
example, Lp can be partitioned into the triples (o, s, p) start-
ing with objects 1 (SA), 2 (UCh), 3 (LH), 4 (BA), and 5 (Baq),
which we indicate below the sequence, and whose endpoints
are marked in the array Co, shown on the bottom.
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Consider Lp[16] = 3 (l5), which gives the predicate of a
triple whose object is 5 (Baq) because it belongs to the range
Lp[15 . . 16] = Lp[Co[5]+1 . . Co[5+1]]. To find this triple’s
subject, we note that this is the fourth 3 (l5) in Lp. If we go
to the fourth position in the area of l5 in Ls, Ls[7 . . 10],
which is Ls[10], we learn that the subject is Ls[10] = 4

(BA). Indeed, LFp(16) = 10. Thus, the triple is BA l5−→ Baq.
Furthermore, Ls[10] is the second 4 in Ls, so if we go to
the corresponding position Lo[12] (note LFs(10) = 12) we
cyclically find Lo[12] = 5 (Baq), the object of the triple.
We indeed return to position Lp[16] if we map Lo[12], the
second 5 in Lo, to Lp. Again, LFo(12) = 16. ⊓⊔

Multijoins can then be solved using backward search
[27] over the ring, which computes in batch all of the LF-
steps in a range. Consider a range Lp[bo . . eo] listing all
triples with a specific object o. The backward search by
some specific predicate p gives the range Ls[bp . . ep] cor-
responding to all triples with object o and predicate p. This
is computed with the following formulas, which extend the
LF-steps (Eq. (5)) to ranges [27, 7]:

bp = Cp[p] + rankp(Lp, bo − 1) + 1, (6)

ep = Cp[p] + rankp(Lp, eo). (7)

Listing the subjects s in Ls[bp . . ep] then yields all the triples
with that specific predicate p and object o, for example.

Example 8 Continuing our example, assume we wish to find
all subjects for triples with predicate 3 (l5) and object 4 (BA).
Let us start from Lp[11 . . 14], corresponding to object BA. If
we apply a backward search step from bo = 11 and eo =

14, on the label 3 (l5) using Eqs. (6) and (7), we obtain
Ls[bs . . es] = Ls[8..9] = ⟨1, 5⟩, meaning we arrive at BA by
l5 from sources Ls[8] = 1 (SA) and Ls[9] = 5 (Baq). ⊓⊔

The ring uses wavelet trees [35], described next, to index
each sequence Lo, Ls, and Lp. This representation enables
backward searches in O(log |Σ|) time, and worst-case op-
timal joins with m triple patterns in time O(Q∗m log |Σ|),
where Q∗ is the AGM bound of the query [9, 7].

3.7 Wavelet Trees

The wavelet tree is a versatile data structure that, as we dis-
cuss now, represents a string or sequence within essentially
the same space of its plain representation, while also being
able to efficiently perform a number of useful queries on it.

Definition 11 The wavelet tree represents a string L[1 . . n]

with alphabet [1 . . σ] as a perfect binary tree with σ leaves
such that the cth left-to-right leaf represents symbol c. Each
internal wavelet tree node v that is the ancestor of leaves
cs . . ce represents the subsequence L⟨cs,ce⟩ of L formed by
the symbols in [cs . . ce]. Instead of storing L⟨cs,ce⟩, node v

stores a bitvector W⟨cs,ce⟩, so that W⟨cs,ce⟩[i] = 0 iff the leaf
representing symbol L⟨cs,ce⟩[i] descends by the left child of
v. The leaves are not actually materialized.

The wavelet tree replaces L in the sense that it can obtain
any L[i] in O(log σ) time, as follows. Let v be the wavelet
tree root, which stores bitvector W = W⟨1,σ⟩ where W [i] =

0 indicates that L[i] ∈ [1 . . σ/2]; otherwise L[i] ∈ [σ/2 +

1 . . σ] (we assume σ to be a power of 2 for simplicity). In
the first case, L[i] = L⟨1,σ⟩[i] corresponds to L⟨1,σ/2⟩[i

′],
where i′ = rank0(W, i) and we continue recursively by the
left child of v with position i′. In the second case, L[i] cor-
responds to L⟨σ/2+1,σ⟩[i

′′], where i′′ = rank1(W, i) and we
continue recursively by the right child of v with position i′′.

Operation rank on bitvectors can be done in O(1) time
adding only sublinear space on top of the bitvector [19, 51].
Thus, in time O(log σ) we find a leaf and determine L[i].

Note that all bitvectors stored at an internal wavelet
tree level amount to n bits, and thus the wavelet tree
requires n log2 σ bits, that is, the same as a plain rep-
resentation of L. The total space of the wavelet tree is
n log2 σ+o(n log σ)+O(σ log n) bits. The term o(n log σ)

covers the extra space required by the sublinear-space rank
data structures, whereas the O(σ log n) space is used to
store the O(σ) wavelet tree pointers (a pointer requires
w = Θ(log n) bits in the RAM model of computation).

A similar algorithm can be used to compute rankc(L, i).
We start at the wavelet tree root v and, if c descends by the
left child, we recursively go left with i← rank0(W, i); oth-
erwise we recursively go right with i← rank1(W, i). When
we arrive at the leaf c, the current value of i is the answer.

We can then compute, in time O(log σ), the values
needed in the LF and the backward search formulas
(Eqs. (5) to (7)). Note that the arrays Cx needed in those
formulas require O(σ log n) bits to store O(σ) log(n)-bit
numbers. This is already accounted for in the space we gave
for wavelet trees.

Example 9 Fig. 6 shows the wavelet tree of sequence Lp for
our running example (ignore the slanted bitvectors for now).
To compute rank4(Lp, 5), we start at position i ← 4 of the
root (the short diagonal arrows track our position). Since leaf
4 is to the right, we go right and set i← rank1(W⟨1,5⟩, 5) =

3. On the right child of the root, we see that leaf 4 descends
to the left, so we go left with i ← rank0(W⟨4,5⟩, 3) = 2,
arriving at the leaf of 4. Thus rank4(Lp, 5) = i = 2. Added
to Cp[4] = 10, we obtain position 12 = LFp(5). ⊓⊔

3.8 Solving other problems with Wavelet Trees

Wavelet trees can be used for many other purposes [32, 55].
We will indeed make use of their extended capabilities for
our algorithm. A good warmup is the following problem.
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Fig. 6 The wavelet tree of the sequence Lp of Fig. 5. The short diag-
onal arrows track L[5]. The slanted bitvectors on the nodes refer to the
B entries of the automaton of Fig. 8, and will be discussed later.

Definition 12 The range listing problem is that of listing all
the distinct values in a range L[b . . e] of a string L.

This problem can be solved on the wavelet tree of L as
follows. We start at the root’s bitvector W and descend left
with the interval L⟨1,σ/2⟩[b

′ . . e′], where b′ = rank0(W, b−
1)+1 and e′ = rank0(W, e). We also descend right with the
interval L⟨σ/2+1,σ⟩[b

′′ . . e′′], where b′′ = rank1(W, b−1)+

1 and e′′ = rank1(W, e). We abandon every empty interval
and instead report every leaf we arrive at.

Since every node with a nonempty interval has at least
one child with a nonempty interval, we can charge to the
reported leaves the O(log σ) cost of traversing the path up
to them. The total time is then O(log σ) per distinct symbol
reported, irrespective of the total number of symbols. Note
that this algorithm first visits the leftmost leaves, and thus it
reports the symbols in increasing order.

A related problem is that of intersecting the symbols in
ranges of L.

Definition 13 The range intersection problem is that of list-
ing all the distinct common values in two ranges L[b1 . . e1]
and L[b2 . . e2] of a string L.

To solve this problem on the wavelet tree of L, we tra-
verse it keeping track of both ranges, as for range listing, but
stop descending when any of the two ranges becomes empty.
Only the paths that reach the leaves with both nonempty in-
tervals report an element of the intersection.

This time our search can finish at internal wavelet tree
nodes, so we do not obtain O(log σ) time per reported ele-
ment. Still, the described algorithm matches the lower bound
for computing intersections given in Lemma 1 [32].

Our third problem is to count, rather than list, the distinct
values in a range.
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Fig. 7 A sequence L and its array C. We show how to solve the colored
range query on L[3 . . 9].

Definition 14 The colored range counting problem is that
of counting the number of distinct values in a range L[b . . e]
of a string L.

We can solve this problem in O(log n) time (where n

is the length of L) by adding n log2 n + o(n log n) extra
bits of space on top of L [53, 33]. This technique defines
an array C[1 . . n] from L[1 . . n]. We set C[i] = 0 if i is the
first occurrence of symbol L[i]. Otherwise, we set C[i] =

max{j | j < i, L[i] = L[j]}, that is, the previous position
of L where the symbol L[i] appears. It is not hard to see
that the number of different values in L[b . . e] is exactly the
number of symbols strictly smaller than b in C[b . . e].

The number of symbols that belong to [0 . . b− 1] within
the range C[b . . e] can be counted in O(log n) time pro-
vided we represent C as a wavelet tree. This is a specific
case of the range counting query [55]. In order to solve it,
the algorithm descends in the wavelet as for range reporting
C[b . . e]. Let the [b . . e] become [b′ . . e′] when mapped to a
wavelet tree node of C corresponding to the alphabet range
[l . . r] (a subrange of the alphabet [0 . . n − 1] of C). The
traversal stops in the node if b′ > e′, l ≥ b, or r < b. The
first two cases do not count any element because there are
no useful values below those nodes: the range [b . . e] does
not map to the node or no symbol smaller than b appears be-
low the node, respectively. In the third case, instead, all the
symbols below the node belong to [0 . . b− 1], so we add the
e′ − b′ + 1 elements to the count.

The total time is O(log n) since the range [b . . e] can be
covered with O(log n) maximal nodes of the wavelet tree of
C, which have O(log n) ancestors in total. The cost of the
algorithm can be charged to that of visiting those nodes [55].

Example 10 Fig. 7 shows an example of a colored range
query over a sequence L. Below the sequence L we show
the array C and its wavelet tree. For example, C[6] = 3

because the previous occurrence of symbol L[6] = l1 is at
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L[3]. To query the range L[3 . . 9], we count all the elements
in C[3 . . 9] that are < 3. A top-down traversal of the wavelet
tree reports 4 different elements. The rounded rectangles
track the range in each node. Dashed rectangles mean the
traversal continues and solid ones represent nodes where the
algorithm stops. Those that count some solutions have a gray
background. For example, the algorithm stops in W⟨4,7⟩ be-
cause all the elements below that node are in [6 . . 7], thus its
subtree does not contain any solution. In W⟨0,1⟩, instead, the
alphabet is smaller than 3. Therefore, the 3 elements within
the range of that node are counted. The leaf C⟨2,2⟩ adds the
last element, for a total of 4 different elements. ⊓⊔

4 Our Approach

We consider evaluation of (2)RPQs under set semantics,
where, as discussed by Arenas et al. [6], evaluating recursive
RPQs under bag semantics is costly as it involves counting
a potentially exponential number of (simple) paths. To
evaluate RPQs, we navigate backwards all the paths that
match them, conceptually performing a BFS traversal of the
product graph. Our data structure will include part of the
ring structure, more precisely, the wavelet trees representing
sequences Lp and Ls, as well as all the arrays C∗.

The sets of subjects and objects are equal and correspond
to the nodes V in the graph; each node may act as a subject
(i.e., edge source) or as an object (i.e., edge target). The set
of predicates P ⊆ Σ↔ corresponds to the edge labels of
G↔. In order to represent nodes and predicates in wavelet
trees, we map the identifiers to integer intervals, identifying
V = [1 . . |V |] and P = [1 . . |P |].

We will first focus on RPQs of the form (x,E, o), where
x ∈ Φ and o ∈ V . We will build the Glushkov automaton
for E and use it to navigate backwards, from objects to sub-
jects. Since we use the NFA backwards, we will start from
its final states, D = F , use the reverse Glushkov simulation
of Eq. (4), and report a valid binding x = s at every node
s ∈ V where the initial NFA state is activated. The naviga-
tion starts from the range of o in Lp.

This technique also supports RPQs of the form (s, E, y),
where s ∈ V and y ∈ Φ, by reversing E and searching
instead for (y, ˆE, s). We will later consider the other kinds
of RPQs.

We note that since the alphabet of E is P , our vector
B[1 . . |P |] for the bit-parallel NFA simulation is of size
O(|P |), but still preprocessing the RPQ takes time O(2m)

with lazy initialization. This adds a working space usage of
O(2m + |P |) on top of the ring.

Example 11 The RPQ (Baq,l5+/bus,y) tells us where we
can reach from Baq via line 5 then taking one bus. The re-
versed regular expression is ˆE = ˆbus/l5∗/l5, equivalent
to the example a/b∗/b of Fig. 3. We have converted bus to

. . . 
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T’  

T’  

[0011] = 0110T’  

T’  [0100] = 1000

B  

B  

B  

B  

B  [l1] = 0000

[l2] = 0000

[bus] = 0000

[^bus] = 0100
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Fig. 8 The Glushkov automaton for the regular expression
ˆbus/l5∗/l5, its bitvector F and table B, and the transition ta-
ble T ′ of its reversed automaton.

ˆbus to reverse the edge direction (we do not do this for
l5, which is bidirectional). Fig. 8 shows the Glushkov au-
tomaton for this regular expression; note that B[ˆbus] cor-
responds to B[a] and B[l5] to B[b] in Fig. 3, and that the
alphabet of the regular expression is the set of predicates.

We first start from node 5 (Baq) and work backwards.
We thus start from Lp[Co[5] + 1 . . Co[6]] = Lp[15 . . 16],
and report all the nodes that we can reach in reverse from
there that activate the initial state of our automaton, 0. ⊓⊔

As said, we will virtually traverse our induced subgraph
G′
M of the product graph GM backwards. To simulate this

process, we perform a sequence of (backward) NFA steps,
traversing in reverse the possible paths ρ that match ˆE. The
traversal abandons every branch where the NFA runs out of
active states. Every time it reaches the initial state we report
the current node. Each NFA step starts and ends at a range
of Lp corresponding to the current object (initially, o), and
is simulated in the following three parts:

1. We find all the predicates labeling edges that point to
the current object. This leads us from the interval in Lp

(corresponding to the object) to several intervals in Ls

(corresponding to distinct predicates for that object).
2. We find the subjects of edges labeled with each such

predicate. This leads us from each interval in Ls (corre-
sponding to a predicate leading to our object) to several
intervals in Lo (corresponding to distinct subjects).

3. We regard each of those subjects as an object again, by
mapping each resulting range in Lo to the corresponding
range in Lp. We only need Co to do this, not Lo.

After steps 1 and 2, we abandon the branch if the resulting
range is empty. After step 2, we perform the NFA transition
and abandon the branch if we run out of active states (D =

0). We report the subject if the initial state is active in D.
Note that, in step 1, we are only interested in predicates

that lead to some node in GM. That is, we want predicates
that lead not only to the current object, but also to active
NFA states. In step 2, we are only interested in subjects that



Optimizing RPQs over a Compact Graph Representation 11

have not been visited before with the same NFA states, so as
to avoid falling into cycles of GM.

In terms of the product graph, visiting a node v of G with
a set D of active NFA states corresponds to traversing si-
multaneously all nodes of G′

M that combine v with an active
state in D. Thus, bit-parallelism enables us to perform less
work than classical techniques that visit G′

M node by node.
Similarly, the ability of wavelet trees to work on ranges of
symbols will let us work simultaneously on various nodes of
G. Furthermore, we will combine this ability with Fact 1 to
carry out steps 1 and 2 in such a way that the time spent is
upper bounded by Eq. (2). We now detail each part.

4.1 Part one: Finding predicates from objects

The first part finds the distinct predicates p that lead to (i.e.,
cyclically precede in the (o, s, p) triples) the current range of
objects. We can use the wavelet tree of Lp to discover all the
distinct predicates p in Lp[bo . . eo], using the range listing
algorithm described in Section 3.8. Next, we can identify
which of those predicates p lead to a currently active NFA
state, that is, such that D & B[p] ̸= 0 per Eq. (4).

Listing and checking Eq. (4) on every distinct predicate
p, however, may involve checking many predicates that lead
to no node in GM, which we aim to avoid as it leads to a
suboptimal cost in terms of CostG (Section 3.2).

Instead, we will find the useful predicates p efficiently
thanks to Fact 1 and to an enhancement of the wavelet tree
of Lp, where we will have B[·] entries not only for the predi-
cates p, but also for all the other |P |−1 nodes in the wavelet
tree of Lp: Let v be a wavelet tree node; then B[v] will be
the bitwise-or of the B[p] entries of all the symbols p de-
scending from v. This allows us to quickly determine that
whole ranges of values of p will activate no NFA state.

Example 12 The B[·] entries for all the nodes of the wavelet
tree of Lp are written as slanted bitvectors on the nodes
in Fig. 6. Those on the leaves correspond to the entries in
Fig. 8, and those on internal nodes to the bitwise-or of their
children. Thus, for example, the bitvector 0011 on the left
node of level 2 indicates that via its descendents l1, l2 and
l5, one reaches only states 2 and 3 in the NFA of Fig. 8. ⊓⊔

This enhancement can be built with lazy initialization
from the B[p]s in O(m log |P |) time, by starting with all
B[v] = 0 and working upwards only from the nonzero en-
tries B[p], doing B[v]← B[v] | B[p] for every ancestor v of
p. The extra space is still O(|P |), and we can store the en-
tries B[v] in heap order, following the (perfectly balanced)
wavelet tree of Lp.

With this extension of B, we proceed as follows. We
start from the root v of the wavelet tree of Lp, with the range
[b . . e] = [bo . . eo] and bitvector D. If D & B[v] = 0, we

stop. Otherwise, if v is a leaf p, then we report the interval
Ls[b . . e]. Otherwise, we recursively continue with the left
and right children vl and vr of v, with the intervals [b . . e] =
[rank0(W, b − 1) + 1 . . rank0(W, e)] for vl and [b . . e] =

[rank1(W, b− 1) + 1 . . rank1(W, e)] for vr.

Example 13 To start the search from Lp[15 . . 16] and
D = 0001, we must first find all distinct values in the range
that label transitions leading to an state active in D. We
start from the wavelet tree root v⟨1,5⟩ of Fig. 6, with the
range L⟨1,5⟩[15 . . 16]. We descend to the left child, v⟨1,3⟩
since B[v⟨1,3⟩] & D = 0011 & 0001 ̸= 0000 and thus there
are relevant transition labels below it. When descending,
we map the range to L⟨1,3⟩[9 . . 10] (because rank0(W⟨1,5⟩,

15 − 1) + 1 = 9 and rank0(W⟨1,5⟩, 16) = 10). From
v⟨1,3⟩, we do not descend to v⟨1,2⟩ since B[v⟨1,2⟩] & D =

0000 & 0001 = 0000 and thus no relevant transition
labels descend from it (though there is a 1 in our range
L⟨1,3⟩[9 . . 10] indicating an l1 reaching Baq, it does not
lead to active NFA states). Instead, we descend to v⟨3,3⟩
because B[v⟨3,3⟩] &D = 0011 & 0001 ̸= 0000. Since it is a
leaf, we have found a relevant label (3, i.e., l5) reaching our
range (i.e., Baq). Its range is L⟨3,3⟩[4 . . 4], which added to
the number of leaves in l1 and l2 (equivalent to Cp[3] = 6)
yields the range Ls[10 . . 10], completing the backward
search step for symbol l5 (recall Eqs. (6) and (7)).

On the other hand, we do not descend from v⟨1,5⟩ to its
right child, v⟨4,5⟩, because B[v⟨4,5⟩] &D = 0100 & 0001 =

0000. If we did, we would obtain an empty interval in L⟨4,5⟩
because there are no 4s or 5s in L⟨1,5⟩[15 . . 16]. ⊓⊔

In order to analyze this process, let us adapt the defini-
tion of labM to sets of states D and to the reverse traversal
done with our Glushkov automaton:

lab(D) = {p | D&B[p] ̸= 0}.

Let us also adapt labG to a set of predicates in Lp:

lab(bo, eo) = {Lp[i] | bo ≤ i ≤ eo}.

The process we described corresponds to intersecting, using
the wavelet tree of Lp enriched with the array B[·], lab(D)

with lab(bo, eo). The cost of such an intersection algorithm
is analyzed by Gagie et al. [31, Thm. 8], in terms of the
number of wavelet tree nodes that cover both sets. Their re-
sult is that, if the sets of wavelet tree leaves corresponding
to both sets are X and Y , then the cost of the wavelet tree
intersection, or equivalently, the number of nodes that are
ancestors of leaves in both X and Y , is upper-bounded by
α(X,Y ) log |P |

α(X,Y ) . Our algorithm proceeds in exactly the
same way: the wavelet tree nodes that are traversed corre-
spond to the ancestors of leaves that are both in lab(D) and
in lab(bo, eo). As a result, the cost of our intersection is

O

(
α(lab(D), lab(bo, eo)) log

|P |
α(lab(D), lab(bo, eo))

)
.(8)
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Note that this scheme works thanks to Fact 1, since we
must intersect every B[p] with the same set D of active
states. Furthermore, in terms of the product graph traver-
sal, we are simultaneously processing all nodes that com-
bine o with the active states in D, thus allowing us to ob-
tain all the distinct edges of G′

M that we can traverse from
the current nodes of G′

M. This leads to a cost that can be
even lower than the formula of Eq. (2), because α(X1 ∪
X2, Y ) ≤ α(X1, Y ) + α(X2, Y ) and α(X,Y1 ∪ Y2) ≤
α(X,Y1) + α(X,Y2). Therefore, α(lab(D), lab(bo, eo)) ≤∑

q∈D, x∈Lp[bo. .eo]
α(labM(q), labG(x)) and thus our cost

in Eq. (8) is a lower bound to alt(G′
M, |P |) (Eq. (2)).

4.2 Part two: Finding subjects from predicates

The second part of the process starts at each of the ranges
Ls[bp . . ep] reported by the first part, and traverses the
wavelet tree of Ls using the range reporting algorithm of
Section 3.8 to find all the distinct subjects s in that range,
mapping each to an interval Lo[bs . . es]. By Fact 1, the set
of active NFA states will be the same, D ← T ′[D & B[p]]

(Eq. (4)), for all those subjects. If D contains the initial
state, we report that subject s starts a path of the 2RPQ (i.e.,
we report (s, o) as an answer to the query).

Example 14 Once we obtain the range Ls[10 . . 10] = 4 (BA)
from edge label 3 (l5), giving the edge BA

l5−→ Baq, we up-
date D ← T ′[D & B[3]] = T ′[0001 & 0011] = T ′[0001] =

0110, activating states 1 and 2 in our NFA (see Fig. 8). This
new state D is independent of the subject we arrived at. ⊓⊔

We need to prevent falling into cycles, however: If we
arrive at a subject s with a subset of the NFA states we have
already visited s with, we must stop because we are repeat-
ing nodes in the product graph.

To avoid cycles, we store an array S[1 . . |V |] that, for
each subject s, stores a bitvector S[s] with all the active NFA
states we already reached s with. This adds O(|V |) working
space, but S can be zeroed in constant time with lazy ini-
tialization. If we arrive at s and D | S[s] = S[s], then s can
be skipped because we are only repeating NFA states on it
(and cycling in GM). Otherwise, we set D ← D & ∼ S[s]

and then S[s] ← D | S[s], where “∼” is bitwise-not. This
leaves only the NFA states that are new to s in D, and adds
to S[s] the new active states we have arrived at s with. At
the beginning of our traversal, after zeroing D we mark the
states F on the node o where we start the search.

The problem with this simple solution is that, again, we
are generating each subject s and then verifying if it has
already been visited. Once again, we can do better.

To implement this filter more efficiently, we will again
exploit Fact 1 and enhance the wavelet tree of Ls. We use the
same technique of storing S[·] entries at wavelet tree nodes

UCh BA Baq
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0110

1000

l5

^bus

l5

SA

^bus ^bus

l5 l5

l5

l5

l5l5

^bus

^bus

3
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1

Fig. 9 The visited part of the product graph to match the NFA of Fig. 8
in our graph of Figs. 1 and 5. We show in the rows the D values (i.e.,
sets of NFA states) we visit, and label the graph edges for readability.

v of Ls, so as to avoid descending by a branch if all the sub-
jects below it have already been visited with all the active
states in D. For this, S[v] must be the intersection of those
S[s] cells below v. When reaching v along the range list-
ing algorithm on Ls[bp . . ep], we prune the traversal at v if
D | S[v] = S[v]; otherwise we continue via both left and
right children. If we arrive at a useful wavelet tree leaf s,
we set S[s]← D | S[s] as explained, and then climb up the
wavelet tree setting S[v] ← S[vl] & S[vr] for every ances-
tor v of s with children vl and vr (we can stop this upward
update as soon as v does not change).

Just as in Section 4.1, this process can be analyzed in
terms of the alternation complexity between the set of sub-
jects that lead to the given object by the given label, and the
set of subjects not yet reached with all the states active in D.
For simplicity, we omit this analysis and simply charge the
algorithm O(log |V |) time for the wavelet tree traversal of
every edge in A′

M, that is, O(|A′
M| log |V |) overall.

Not visiting s with a subset of the NFA states of previous
visits ensures that we never work more than classical prod-
uct graph traversals: every time we reprocess a node s of G,
we must be including a new NFA state in D (instead, we can
be faster because we handle several NFA states together, as
explained). Again, we can efficiently filter the subjects with
the wavelet tree thanks to Fact 1, because all the subjects s
are visited with the same set of states D.

4.3 Part three: Mapping subjects back to objects

In the third part, we report each useful subject s we must
consider, with its corresponding state D. In order to proceed
with the next step of the simulation, we must map this range
of subjects to the same range of nodes seen as objects. This
is done with the array Co, where Co[s] is the number of sym-
bols smaller than s in Lo. Thus, Lp[Co[s] + 1 . . Co[s + 1]]

corresponds to the interval of Lp that is aligned to object s.
Then, as explained, we restart part one with each s for

which Co[s+ 1] > Co[s], with state D.
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Example 15 Fig. 9 (bottom left) shows the traversed part of
the product graph for our running example. Numbers rep-
resent the order in which nodes are traversed. Edges are la-
beled for readability only. The nodes of the product graph
are formed from pairs of graph nodes (Fig. 1) and automaton
states (Fig. 8). Columns indicate graph nodes; e.g., nodes 1
and 4 correspond to Baq, being in the same column. Rows in-
dicate states, where on the right we show bitvectors denoting
sets of NFA states active on that row; for example, for nodes
2, 3 and 4, the bitvector 0110 indicates that we are pro-
cessing states 1 and 2 simultaneously at these steps. Thus,
e.g., node 4 actually corresponds to two nodes in the prod-
uct graph that we are processing simultaneously: (Baq, 1)
and (Baq, 2). The examples illustrated in parts one, two and
three of this section solve the (reverse) traversal 2 l5−→ 1.
The same process can be applied successively in order to
evaluate all six steps, as illustrated in the Appendix. ⊓⊔

When some of the reported subjects s are successive and
share the same state D after removing S[s] from it, we can
speed up the algorithm. Since k successive subjects [s . . s+
k − 1] have consecutive intervals in Lp, we can map all of
them together to the same interval Lp[Co[s]+1 . . Co[s+k]].
Note that parts one and two do not require that the intervals
in Lp and Ls correspond to a single target node. Therefore,
we can efficiently restart part one with only one range in-
stead of k different intervals, further exploiting the ability of
our algorithm to simultaneously process several nodes of G.

Checking whether the subjects are consecutive is easy
because, when we enumerate the distinct subjects using our
modified range listing on Ls[bp . . ep], the subjects are output
in increasing order regardless of their position in Ls.

4.4 Time complexity

The following theorem summarizes the cost of our data
structure and traversal algorithm.

Theorem 1 Let G be a labeled graph with nodes in V and
labels in P . Consider an RPQ (x,E, y) where x is constant
and y is variable or vice versa, E has m literals, and the
computer word holds w = Ω(m) bits. The ring representa-
tion of G can return all the matching pairs (s, o) for the RPQ
in time O(2m+m log |P |+ |A′

M| log |V |+alt(G′
M, |P |)) ,

where G′
M(V ′

M, A′
M) is the subgraph, of the product graph

of G and Glushkov’s NFAM of E, induced by a BFS traver-
sal from the constant node, and alt(G′

M, |P |) is defined in
Eq. (2). The working space of the query is O(2m + |P | +
|V |+ |V ′

M|) words. For any desired parameter 1 ≤ d ≤ m,
we can reduce the space to O(d 2m/d + |P | + |V | + |V ′

M|)
words, and the time becomes O(d 2m/d+m2+m log |P |+
d|V ′

M| + |A′
M| log |V | + alt(G′

M, |P |)) . If w = o(m), all
the space and time complexities are multiplied by O(m/w).

Proof First consider the query (x,E, o) for s ∈ Φ and o ∈
V . The algorithm virtually visits the nodes of G′

M in reverse
order. It starts simultaneously from all the nodes (o, f) ∈
V ′
M, for all the final NFA states f ∈ F (we regard F and
D as sets of NFA states). The algorithm preserves the in-
variant that, if it is at node v ∈ V with the active NFA
states D, then it is the first time it simulates the visit of
the node (v, d) ∈ V ′

M for any NFA state d ∈ D. Edges
from new nodes (v′, d′) ∈ V ′

M to (v, d) are found in three
parts. In the first part, it finds every distinct label p ∈ P of
edges in A′

M that lead to (v, d) for some d ∈ D. As seen
in Section 4.1, the total cost for this part can be bounded
by O(alt(G′

M, |P |)). In the second part, for each label p
found, it finds every distinct node v′ ∈ V such that we
reach (v, d) (for some d ∈ D) from some unvisited node
(v′, d′) of V ′

M via label p (it obtains simultaneously the set
D′ of all those states d′). We can then charge the cost to
the edges ((v′, d′), (v, d)) ∈ A′

M, yielding a total cost of
O(|A′

M| log |V |) as shown in Section 4.2. The third part
takes O(1) time per node arrived at, which becomes the cur-
rent node in the next iteration.

As for the initialization costs, Glushkov’s construction
takes O(m2) time [17] to mark all bits in B[1 . . |P |] after
the constant-time lazy initialization of B. The construction
of the bit-parallel tables takes time O(2m) [56], dominated
by table T . Computing the cells B for the internal wavelet
tree nodes of Lp using lazy initialization adds O(m log |P |)
time since only O(m) wavelet tree leaves have nonzero cells
in B. The lazy initialization of S for the wavelet tree nodes
of Ls adds O(1) time.

The working space is O(m 2m) bits (i.e., O(2m) words
when m = O(w)) for the bit-parallel simulation of the NFA,
O(m(|P |+ |V |)) bits for the tables B/S on the wavelet tree
nodes of Lp/Ls, O(|P |+|V |) bits for the compact structures
for the lazy initialization of tables B/D (see App. C, [54]),
and O(|V ′

M|) words for the BFS traversals (to store the state
D and the range in Lp of each node of G′

M in the queue).

Partitioning the table T into d > 1 subtables to reduce
the exponential term 2m can be done whenever it is con-
venient. As mentioned in Section 3.5, the construction time
of T and its space become O(d 2m/d) words of m bits. This
also impacts on the traversal time: since we recompute D us-
ing T for each label we process along the traversal of G′

M,
splitting T adds O(d |V ′

M|) to the cost.

Finally, if the computer word cannot hold m + 1 bits,
we store ⌈(m + 1)/w⌉ words for D, F , and the cells of
table T and arrays B and S. This impacts every term of
our space complexity, which must be then multiplied by
O(m/w). Similarly, all the terms of our time complexity
involve processing some of those cells, and thus our time
complexity is multiplied by O(m/w), too.
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Fig. 10 The product graph GM of the graph of Fig. 1 and the NFA of
Fig. 8, highlighting in black the subgraph G′

M that is traversed (back-
wards) in Fig. 9. Dashed arrows lead to the loops we avoid.

To solve queries (s, E, y), where s ∈ V and y ∈ Φ, we
just reverse the query and proceed as before on (y, ˆE, s) (as
we did in our running example). ⊓⊔

The theorem does not reflect that we can process
several NFA states d simultaneously when traversing
the nodes (v, d) of G′

M, thanks to the bit-parallel sim-
ulation of the NFA. On the other extreme, we can
choose d = m (i.e., simulate the automaton state-
by-state) so as to completely remove the exponential
dependence on m; we then obtain a time complexity of
O(m(m+log |P |+ |V ′

M|)+ |A′
M| log |V |+alt(G′

M, |P |)).
In practice, if we have long RPQs, we can increase d, which
will decrease the exponential term in m from both time and
space, but will multiply (data-dependent) terms in the time
by d. If we have short RPQ expressions (and lots of data),
we can decrease d, which will have the inverse effect.

Example 16 Fig. 10 shows the product graph GM of our
running example, with the nodes and edges of G′

M in bold.
The rows now correspond to the NFA states. The dashed
edges form cycles in G′

M and we avoid them. The shaded
nodes correspond to reported results. Comparing the figure
with Fig. 9, however, one can see that our simulation pro-
cesses the nodes of the second and third rows of GM simul-
taneously (in row 0110 of Fig. 9). We maintain in Fig. 10 the
numbering of the nodes of Fig. 9, which helps see the nodes
we visit simultaneously. ⊓⊔

4.5 Other kinds of RPQs

We have so far considered RPQs where one extreme is fixed
and the other is variable. For RPQs where both s, o ∈ V are
fixed, we can start from o and process ˆE, stopping when
we find s or run out of active states (or vice versa with E).

The most complex case, (x,E, y) with x, y ∈ Φ, has
variables for both subject and object, where we must find all

the pairs (s, o) connected by a path matching E. We could
handle this query by launching |V | queries (s, E, y), one per
possible subject s, but this could be very inefficient if many
subjects s do not lead to answers (s, o).

A more efficient solution uses the ability of the ring
and of wavelet trees to work on ranges of symbols, in
order to spot the useful sources s. We determine which
RPQs (s, E, y) produce some output by working backwards
from the objects o using queries (x,E, o) and collecting
the useful values s for x. Instead of starting with each
specific object o, however, we will start with the full range
Lp[1 . . n]. Exactly the same algorithm we have described
for queries (x,E, o), now started with the full range, obtains
all the subjects s leading to some object by E. Then, for
every subject s we arrived at, we run the RPQ (s, E, y), and
report (s, o) for each object o found in this search.

We can, symmetrically, first find the objects o reach-
able via E from some subject, and then run only the useful
queries (x,E, o). Which is better depends on the data. In the
next section we discuss more sophisticated ways to handle
RPQs with two variables (as are often the most expensive).

5 Optimizations

We present two novel optimizations for RPQs, based on
node ordering and splitting RPQs.

5.1 Node ordering

As described in Section 4, the ring maps nodes and predi-
cates to ranges of integer identifiers. Any mapping is equiv-
alent in terms of correctness, though some can be preferred
for other reasons; e.g., using the lexicographic rank of the
original string identifiers enables a more compact storage of
the dictionary that maps strings to identifiers and back [47].

Other identifier orderings can be beneficial for the time
performance of our index, however. In part three of our algo-
rithm (Section 4.3), we can reduce the number of intervals
that restart our search when some of the reported subjects
from Ls[bp . . ep] are consecutive and share the same NFA
state. We can then speed up our performance by ordering
the nodes in a way that maximizes the number of consecu-
tive subjects reported by Ls. Since our RPQ algorithm tra-
verses the graph in BFS order, encoding the nodes in that
order is a promising strategy. While this does improve times
in practice, we obtained better results by exploiting the fact
that our algorithm always departs from a range of edges with
the same predicate and then enumerates the corresponding
source nodes (part two, Section 4.2).

Our actual strategy uses a node ordering that locally pre-
serves the BFS order for the nodes that are sources of edges
with the same labels. We navigate the whole graph with a
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BFS that visits backwards every node, starting a new BFS
from an arbitrary remaining unvisited node. Each node vis-
ited for the first time through an edge labeled p is appended
to a list Lp. Once the BFS traversals are complete, the nodes
in each list Lp are given consecutive identifiers.

While this does not guarantee that all the nodes in
Ls[bp . . ep] will have consecutive identifiers, longer succes-
sions of identifiers will tend to appear in those intervals, as
we will show in the experimental results.

5.2 Splitting RPQs

Our key contribution is a data representation that enables
efficient traversal of the induced subgraph G′

M, processing
several nodes and states together, Still, other than using
Glushkov’s instead of Thompson’s NFA to build GM, the
subgraph G′

M itself is relatively standard, resulting from
navigating in BFS order from the fixed node. When both
extremes of the RPQ are variable, this requires trying out
a potentially large number of starting points for the BFS
traversal. A good part of the related work reviewed in
Section 2 focuses instead on generating smart query plans
via defining a much smaller subgraph G′

M to navigate. Their
strategy is to split the RPQ into sub-RPQs at infrequent
labels that must occur in all matching paths, so they are
searched from a few starting nodes only. Their results are
later combined to obtain the final answer. In this section we
show how some extensions to our data representation enable
the generation of highly competitive query plans of this
kind, which can then be executed using our data structures.

Example 17 Assume we have a graph with information
about museums visited by people (visits), bands where
some violinists play (violinist in), and events where differ-
ent bands play (plays in). Fig. 11 (top) shows the number
of different source/target nodes of each predicate for the
RPQ E = ˆvisits/violinist in/plays in. For example, 10,000
different museums were visited by 100,000 different people.
By starting the query with ˆvisits, from the 10,000 museum
nodes, the algorithm advances to 100,000 nodes of people
that have visited a museum. In the next step, the algorithm
has to check if each of those persons plays the violin.
Instead, by splitting the query at the violinists (source of
violinist in) we obtain the 300 nodes that are violinists,
and move from them to the museums, without checking
jobs of 100,000 people. Evaluating the query from the
target of violinist in to the end works analogously. Solving
both sub-expressions (ˆvisits and violinist in/plays in), and
combining their results is likely much faster than computing
the query from either end. ⊓⊔

Let us first focus on queries of the form (x,E, y) where
x, y ∈ Φ, that is, when both source and target are variables.

10K

2K

100K

museums bands events

^visits violinist_in plays_in

G

(1)

(2)

^visits

violinist_in

plays_in

10 1/2 2

1/2

people

21/10

1W 90= W 2=75 3W 2K=

4K

150300

Fig. 11 The top rectangle exemplifies the number of graph
nodes participating in the edges of an RPQ where E =
ˆvisits/violinist in/plays in. Each value within the bounded rectan-
gles indicates the number of different nodes that are either sources or
targets of a predicate. The rectangles in the middle and in the bottom
illustrate the first and second steps of our query plan, respectively.

Those are likely to be the most expensive queries. Say we
choose to split E = E1/E2 and then execute the subqueries
rpq1 = (x,E1, z) and rpq2 = (z, E2, y) for each possible
constant z ∈ Z, for some Z ⊆ V . For each solution (a, z) of
rpq1 and (z, b) of rpq2, we add (a, b) to a set Sz . The final
result is the union of all the sets Sz for every z ∈ Z.

To ensure correctness, we can choose Z = V . How-
ever, we can optimize by choosing a smaller set Z that still
obtains all the results for (x,E, y). In particular, Z can be
set to the intersection of the nodes E1 can arrive at, and the
nodes E2 can start from. For example, if E1 ends with a
single predicate p1, then it suffices that Z contain the tar-
gets of edges labeled p1, where ˆp1 forms a range in Ls. If
E2 starts with a single predicate p2, then it suffices that Z
contain the sources of edges labeled p2, which form a range
in Ls. If both conditions hold, Z can be the intersection of
both ranges.

We will use the syntax tree of the regular expression
(Section 3.4) to define positions where it can be safely split.

Definition 15 A position of E is mandatory iff all the an-
cestors of its corresponding leaf in the syntax tree are con-
catenation nodes.

Example 18 In the syntax tree of Fig. 2, positions 1 and 3

are mandatory, whereas 2 is not. ⊓⊔

Recall that, by property (3) of Glushkov’s automaton
(Section 3.4), the state k of Glushkov’s NFA receives only
transitions with label pk. The following fact establishes the
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importance of mandatory positions: every path matching E

must include an edge with their label.

Fact 2 If k is a mandatory position of E, then every path
from s to o that matches the RPQ (s, E, o) includes an edge
labeled pk.

Let us call source(p) and target(p) the set of source
and target nodes of edges labeled p, respectively. Fact 2
implies that, if k is a mandatory position, then we can set
Z = source(pk) or Z = target(pk) and still get all the re-
sults. Our wavelet tree-based representation enables a more
sophisticated way to define Z based on the following fact.

Fact 3 If both k and k + 1 are mandatory positions of an
expression E, then every path from s to o that matches the
RPQ (s, E, o) includes two consecutive edges labeled pk
and pk+1.

This fact implies that another valid set Z in such a case
is Z = target(pk) ∩ source(pk+1). We then define Z as the
set of smallest cardinality among those induced by manda-
tory positions (Fact 2) and pairs of consecutive mandatory
positions (Fact 3). Note that, since Fact 3 is more restrictive
than Fact 2, we will always choose the former when we have
consecutive mandatory positions.

Formally, let k be a mandatory position, then Wk is the
minimum-cardinality set between source(pk), target(pk)
and, if k + 1 is also mandatory, target(pk) ∩ source(pk+1).
Ties can be broken arbitrarily. A rough plan then consists in
setting Z to a set Wk of minimum cardinality.

Example 19 Fig. 11 (middle) defines the size of each pos-
sible Wk. For example, since the first mandatory position,
with predicate p1 = ˆvisits, is followed by another manda-
tory position, with predicate p2 = violinist in, W1 is the
intersection between target(ˆvisits) and source(violinist in).
For the example, we assume that |W1| = 90, i.e., that 90
violinists that have visited a museum. On the other hand,
since the last position, with predicate p3 = plays in, cannot
apply Fact 3 and has more distinct targets than sources, it
has W3 = source(plays in). Once all the Wks are computed,
the minimum size of Z is 75, which is obtained from the in-
tersection between target(violinist in) and source(plays in).
Therefore, Z contains 75 nodes of bands and the two sub-
expressions are E1 = ˆvisits/violinist in and E2 = plays in.
This plan avoids checking if each possible band (2,000)
plays in an event or if each museum (10,000) has been
visited, which would be necessary if we started from the
last or the first extreme of E, respectively. ⊓⊔

The rough approach of minimizing |Z| does not always
lead to the minimum number of steps to solve E1 and E2,
however. Since we have to navigate the product graphs of
both subexpressions, the cost of solving an RPQ depends,
more precisely, on the number of traversed edges.

In order to approximate the number of traversed edges,
we assume that the edges of each predicate distribute uni-
formly between its linked nodes. That is, in the subgraph
with just the edges labeled p, all the nodes in source(p) have
the same out-degree, and all the nodes in target(p) have the
same in-degree. Those average degrees can then be com-
puted, respectively, as

deg+(p) =
|target(p)|
|source(p)|

, deg−(p) =
|source(p)|
|target(p)|

.

For simplicity, let us rename p1, . . . , pk to be the labels
of the mandatory positions in E1, and pk+1, . . . , pm those of
E2. The algorithm then traverses approximately deg−(pk)
edges in E1 and deg+(pk) in E2 for each node in Wk. Fo-
cusing on E1, the approximate number of traversed edges is
|Wk|deg−(pk). This is also an approximation of the num-
ber of active nodes in the second step. The number of tra-
versed edges in the second step is then approximated as
|Wk|deg−(pk)deg−(pk−1), and so on. The computation is
analogous for E2, using deg+(p) instead of deg−(p). The
number of traversed edges is then approximated as

|Wk|

 k∑
i=1

k∏
j=i

deg−(pj) +
m∑

i=k+1

i∏
j=k+1

deg+(pj)

 . (9)

Our execution plan then splits E by computing each pos-
sible Wk according to Facts 2 and 3, setting Z to the Wk that
minimizes Eq. (9). Note that this might still imply solving E

left to right as a whole (i.e., not splitting), if its first position
is mandatory and W1 = source(p1) turns out to be the best
option, or right to left if its last position is mandatory and
Wm = target(pm) is the best option. We also solve E as a
whole if it has no mandatory positions.

Example 20 In Fig. 11 (bottom), the rightward arrows
are labeled with the out-degree of their predicate and the
leftward ones with its in-degree (e.g., deg+(ˆvisits) = 10

and deg−(ˆvisits) = 0.1). With our rough strategy, we
would set Z to the 75 nodes of bands with a violinist.
By applying Eq. (9), that option yields an estimation
of 225 traversed edges. Instead, with E1 = ˆvisits and
E2 = violinist in/plays in, the set Z consists of the 90

violinists that visit museums, and its estimated number
of traversed edges decreases to 144. We then deem this
partition to be more convenient. ⊓⊔

Since each term of Eq. (9) indicates the cost of solv-
ing a sub-RPQ, we can prioritize the subqueries depending
on those costs. That is, we start solving rpq1 and then rpq2
when the first term of Eq. (9) is smaller than the second;
otherwise we evaluate rpq2 and then rpq1. This quickly de-
tects elements of Z that have no solution for one of the sub-
queries, and avoids evaluating the other subquery for them.

In order to use this evaluation plan, for Facts 2 and 3,
we need to compute all the sizes |source(pk)|, |target(pk)|,
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and the intersection sizes |target(pk)∩source(pk+1)|. Com-
puting |source(pk)| is equivalent to obtaining the number of
distinct elements in Ls[Cp[pk] + 1 . . Cp[pk + 1]], with the
O(log |V |)-time algorithm described in Section 3.8 for col-
ored range counting. This algorithm poses an extra space
of O(n log n) bits, however; a low-space alternative is to
actually produce the set source(pk) with the algorithm for
range listing described in the same section. Since we store
G↔, we can also compute |target(pk)| by counting the num-
ber of distinct values in Ls[Cp[ˆpk] + 1 . . Cp[ˆpk + 1]]. The
size of the intersections target(pk)∩ source(pk+1), instead,
can only be computed by actually intersecting the intervals
[Cp[ˆpk]+1 . . Cp[ˆpk+1]] and [Cp[pk+1]+1 . . Cp[pk+1+

1]] in Ls and producing the output, with the range intersec-
tion algorithm also described in Section 3.8.

Our technique can be generalized to RPQs of the form
(x,E, y) where x and/or y are constants. Note that at the
extremes we can only apply Fact 2. We now must compute
each Wk considering that x and/or y is an individual node
of G. If x = s ∈ V , then we obtain W1 = {s}. Anal-
ogously, when y = o ∈ V we have Wm = {o}. These
restrictions do not affect the average degrees of the nodes,
so the computation of Eq. (9) stays the same. It is much
more likely, however, that the equation recommends not to
split E, but to process it as a whole starting from a constant
extreme. We can also extend our technique to find multiple
splitting points; we do not further follow this path because
most RPQs are not large enough to make it profitable.

6 Implementation and Experiments

We implemented our scheme in C++11 using the succinct
data structures library (SDSL, https://github.com/
simongog/sdsl-lite). Our code is single-threaded, and
does not use special CPU instructions. We ran our experi-
ments on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz,
with 6 cores, 15 MB of cache, and 384 GB of RAM. Our
code was compiled using g++ with flags -std=c++11, -O3,
and -msse4.2. The source code and data are available at
https://github.com/adriangbrandon/Ring-RPQ.

6.1 Wikidata Benchmark

We first evaluate our approach on a Wikidata graph [69] of
n = 958,844,164 edges, |V | = 348,945,080 nodes, |S| =
106,736,662 subjects, |P | = 5,419 predicates, and |O| =
295,611,216 objects. This graph occupies 7.9 GB (or 8.63
bytes per triple, bpt) in packed form (i.e., using ⌈log |S|⌉ +
⌈log |P |⌉ + ⌈log |O|⌉ bits per tuple) or 2.8 GB (3.1 bpt) by
using Vertical Partitioning [1] (i.e., using |P | · ⌈log n⌉ +∑|P |

p=1 SOp · ⌈logSOp⌉, where SOp is the number of edges

of property p). Our benchmark considers three different vari-
ants of the Ring. We denote as Ring our approach of Sec-
tion 4, without any optimization. The variant that only con-
siders the optimization of Section 5.1 is denoted RingA. Fi-
nally, RingAB uses both optimizations (Sections 5.1 and 5.2).

We compare them with the following graph database
systems, in terms of both space and time:1

Jena: A reference implementation of the SPARQL standard.
Virtuoso: A widely used graph database hosting the public

DBpedia endpoint, among others [26].
Blazegraph: The graph database system [65] hosting the of-

ficial Wikidata Query Service [46].
Datalog: An in-memory Datalog-based engine that we can-

not identify due to licensing terms.

Systems are configured per vendor recommendations,
per previous work [7]. Jena, Virtuoso and Blazegraph
implement RPQs per the semantics of property paths in
SPARQL 1.1 whereby paths without * or + are translated
into SPARQL graph patterns without RPQs and evaluated
under bag semantics. All systems apply set semantics for
arbitrary-length paths, per the SPARQL standard. In order to
make the results comparable, we add the DISTINCT keyword
to apply set semantics for all queries.2 Jena and Blazegraph
implement a navigational BFS-style function called ALP
(Arbitrary Length Paths) defined by the SPARQL 1.1
standard [38]. Virtuoso uses a transitive closure operator
implemented over its relational database engine. The three
SPARQL engines were loaded with RDF graphs using their
bulk-loaders to minimize transactional overhead; these en-
gines dictionary encode the graph internally, where later we
will discuss the overheads associated with this dictionary.

For the Datalog system, we store the graph using the ex-
tensional predicate E(s, p, o) for edges, and an intensional
(materialized) predicate V (n) to capture nodes through the
two rules V (n) ← E(n, p, o), V (n) ← E(s, p, n). We
use the dictionary-encoded graph (terms are integers). We
then translate the RPQs to (positive) Datalog queries. We
first applied a base translation of the syntax tree of RPQs
into Datalog. Thereafter we tested a number of transforma-
tions and optimizations over this base translation, as fol-
lows (the transformations are chained, starting with the base
translation): (1) inlining of non-recursive intermediate pred-
icates, such that rules with that predicate in the head are re-
moved from the query, and rules with that predicate in the
body have the corresponding atoms replaced by the bodies

1 To the best of our knowledge, ArangoDB, Neo4j and OrientDB
do not support RPQs declaratively with the standard semantics as we
define, though Neo4j does provide some RPQ-like features. While our
queries could be run in TigerGraph, its licenses forbid benchmarking.

2 We could support property paths under SPARQL semantics by
evaluating recursive operators under set semantics using the techniques
described here and rewriting non-recursive parts to (unions of) basic
graph patterns evaluated on the Ring [7].

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/adriangbrandon/Ring-RPQ
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of rules with the predicate in the head; (2) linearizing the
query by inlining all but one of the recursive body predicates
(where possible), reducing the arity of intermediate pred-
icates; (3) pushing constants in the query (resulting from
constant node(s) in the RPQ) away from the goal predicate
of the query towards the base graph predicate(s); (4) pruning
to remove duplicate rules, duplicate atoms, and trivially sat-
isfied atoms such as V (x) in a body V (x), E(x, p, y). The
direction of the linear recursion in (2) was decided based
on what would allow optimization (3) to push the constants
through to the base predicate, depending on which node was
constant. We performed experiments with and without each
optimization, where optimization (3) yielded major perfor-
mance gains, avoiding the computation of the complete tran-
sitive closure, rather computing it from a specific constant.
Before querying, we built all four index permutations for
constant predicate – namely POS, PSO, SPO and OPS – as
well as an index on nodes. Since we evaluate RPQs, where
predicates are constant, we omit the two permutations – OSP

and SOP – where the predicate is in the last position as these
can only be useful when the predicate is unknown.

In order to test on real-world queries, we extract RPQs
from the Wikidata Query Logs [46]. However, these logs
contain in the order of 579 million queries, of which 50
million use non-trivial RPQs (i.e., not a simple label) [15].
Based on the average runtimes observed later, sequentially
evaluating all such RPQs for the engines we compare would
take multiple decades on one machine. Thus we rather ex-
tracted all non-trivial RPQs from the smaller set of code-
500 (timeout) sections of all seven intervals of the Wikidata
Query Logs [46]; these queries reached a one-minute time-
out on the public query service, and thus should tend to offer
more challenging instances for our experiments. After filter-
ing RPQs mentioning constants not used in the dataset, nor-
malizing variable names, and removing duplicates, this pro-
cess yielded 1,952 unique queries. From those, we selected
the 1,589 that we could confirm produced less than one mil-
lion results (in some system), for compatibility with Virtu-
oso, which has a hard-coded limit of 220 results. Queries
are run with a 60 second timeout. We classify the RPQs of
our log into patterns by mapping nodes to constant/variable
types and erasing their predicates; for example, (x, p1/p∗2,
y) has the pattern c / ∗ c, c / ∗ v, v / ∗ c, or v / ∗ v, de-
pending on whether x and y are constant (c) or variable (v).
Table 1 shows the most frequent patterns in our log.

Index construction: The Ring works with a dictionary-
encoded version of the graph as described in Section 4,
where we complete the graph by adding the reversed edges
with inverse labels: If an edge is labeled with predicate p,
its reverse edge has predicate ˆp = p + |P |. This doubles
the number of edges and predicates. To construct our index,
we build arrays Ls and Lp (and the corresponding Cp

Table 1 The 18 most frequent RPQ patterns in our log.

1st–6th #

v/*c 450
v*c 421
v+c 107
c*v 98
c/*v 95
v/c 48

7th– 12th #

v*/*c 30
v|*c 30

v*/*/*/*/*c 28
v/v 20

v/?c 20
vˆv 14

13th–18th #

v|v 11
v|c 9
v*v 8
v/+c 7
v/*v 5
v+v 2

and Co) using a suffix array [7]. We represent Ls and Lp

using wavelet matrices [20], a particular implementation
of wavelet trees to handle big alphabets efficiently. We use
plain bitvectors to implement the wavelet-matrix nodes.
Array Co is represented using a plain bitvector, whereas Cp

is represented as a simple array. Our index is constructed
in 1.1 hours, using 73.37 GB of RAM. Prior dictionary
encoding takes 5.2 additional hours, for a total of 6.3 hours.

Implementing queries: To evaluate queries in the Ring
without any optimization, we use our generic query algo-
rithm of Section 4, but handle the query patterns vˆv, v/ˆv,
v|v, v||v, and v/v more efficiently using just backward
search and the extended functionality of wavelet trees:
For a variable-to-variable query (x, p, y) (analogously,
(x, ˆp, y)), we start by extracting all subjects s from
Ls[Cp[p]..Cp[p + 1] − 1], using the wavelet tree. Then, for
each s in that range, we start at range [Co[s]..Co[s]−1] in Lp

and carry out a backward search step using ˆp. This yields
the range of Ls containing all values o such that (s, p, o)
is a graph edge, so we report (s, o). Query (x, p1|p2, y)
(similarly, (x, p2|p3|p4, y)) is decomposed into queries
(x, p1, y) and (x, p2, y), which are computed as explained
before. To detect duplicate pairs (s, o), we use a hash table
(std::unordered set in C++). For query (x, p1/p2, y)

(similarly, (x, p1/ˆp2, y)) we first find all nodes z that
are the target of an edge labeled p1, and the source of an
edge labeled p2. This is done by intersecting the ranges
Ls[Cp[ˆp1]..Cp[ˆp1+1]−1] and Ls[Cp[p2]..Cp[p2+1]−1],
using the wavelet tree capabilities [32]. Then, for every
such z in the intersection, we carry out a backward search
for p1z, to find all nodes s such that (s, p1, z) is a graph
edge. Similarly, we do a backward search for ˆp2z, to
find all nodes o such that (z, p2, o) is a graph edge. Then,
for every such s and o we report (s, o), again avoiding
duplicates. Finally, for queries (x, p1/(p2)∗, y) we start the
search always from the sources of p1. In general, this filters
candidates more efficiently. For all the remaining queries
(x,E, y), we choose to start from the end whose predicate
has the smallest cardinality.

We implement array B (used to filter on Lp in Section
4.1) with an array of integers, initially zeroed. We do lazy
initialization by setting the values of the different predicates
of the query and their wavelet matrix ancestors, and zero-
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Table 2 Index space (in bpt), indexing time (in hours), and some statis-
tics on the query times (in seconds). Row “Timeouts” counts queries
that take over 60 seconds or are rejected by the planner as too costly.
RPQs with some constant node are indicated by c, and without by ¬c.

Ring RingA RingAB Jena Virtuoso Blazegraph Datalog

Index space 16.41 16.41 27.93 95.83 60.07 90.79 78.32
Indexing time 6.3 7.3 8.3 37.4 3.0 39.4 6.0

Average 1.38 0.70 0.59 5.26 3.87 3.58 11.05
Median 0.09 0.03 0.03 0.20 0.14 0.13 2.71
Timeout 14 8 5 105 55 46 198

Average c 0.62 0.25 0.25 3.83 2.98 3.30 10.60
Median c 0.07 0.03 0.03 0.17 0.11 0.13 2.68
Timeout c 1 0 0 63 37 39 178

Average ¬c 14.39 8.55 6.48 29.59 18.95 8.35 18.84
Median ¬c 4.13 2.10 1.57 4.50 7.98 0.19 6.65
Timeout ¬c 13 8 5 42 18 7 20

ing them again after running the query. Array S, on the
other hand, is implemented using a compact lazy initializa-
tion structure (App. C, [54]), which uses O(|V |) extra bits
on top of S. We use 16-bit cells for D, as queries in our log
have fewer than 16 predicates (with a few exceptions that
use operator |, which are handled differently as explained).

Optimizations: The index construction and the mechanism
to support queries underwent some modifications to con-
sider our optimizations. The optimization of Section 5.1
affects the index construction time as it needs to sort the
nodes by navigating the graph. Computing the new order
takes an extra hour. In addition, the optimization that splits
a given query into two subqueries (Section 5.2) needs to
build another wavelet tree to support the colored range
counting problem. That construction requires an extra hour
and increases the memory usage peak to 104.2 GB RAM.

The optimization that splits the RPQ into two subqueries
is only applied when both extremes are variables, because
our tests show that in the other queries the method chooses
to run from the constant extreme, without splitting. Note that
each subquery uses its own array B, which doubles the space
usage of B at query time.

Regarding the shortcuts for the simplest query patterns
presented before (e.g., v/v), they still remain in all the vari-
ants. However, queries of the form (x, p1/(p2)

∗, y) are not
a special case when we use the optimization of Section 5.2.
That is, the starting point of the query is not restricted to the
source of p1. The evaluation plan will decide whether parti-
tioning the query by the target of p1 is more convenient.

Space and query time: Table 2 compares the space usage,
the time taken for indexing, and the query times of the sys-
tems tested. For query times, we measure the time elapsed
between the query request and enumerating the last result.

Ring and RingA are the smallest indexes, using 16.4 bpt.
This is about twice the space of the packed representation
of the data, consistent with the fact that we duplicate all the

edges. Array S, needed at query time, uses 3.1 additional
bpt, whereas B uses 9× 10−5 bpt. The total working space
usage at query time is 19.5 bpt, 1/3–1/5 of the space used
by the other indexes (not considering their extra working
space). Instead, the structure of RingAB requires 27.9 bpt
and duplicates B. Its total working space usage grows to 31
bpt, which is still significantly smaller than the other indexes
(1/2–1/3 of their space). It is worth noting, however, that
the indexes of SPARQL engines support join queries (with
variable predicates), not just RPQs. Indeed, the Ring also
supports such queries when Lo is additionally provided, as
discussed in previous work [7].

Virtuoso has the fastest indexing time of around 3 hours.
For Datalog and Ring, which take 6.0 and 6.3 hours respec-
tively, we include dictionary encoding, which takes the bulk
of time (5.2 hours). The other variants of our approach pay
an extra hour during the dictionary encoding because of or-
dering the nodes. In addition, RingAB builds another wavelet
tree, thus construction takes 8.3 hours. Jena (37.4 hours) and
Blazegraph (39.4 hours) took much longer to index.

Our approach offers the fastest query times on average.
Even the non-optimized Ring is 2.6 times faster than Blaze-
graph, the next best performer. It is also the system with
the fewest timeouts: 14. The best performance is obtained
with RingAB, which is 6.1 times faster than Blazegraph and
produces only 5 timeouts. RingA uses 60% of the space of
RingAB and is only 20% slower on average, being twice as
fast as the basic Ring and 5.1 times faster than Blazegraph.

On the queries where some node is a constant (“c” in
the table, 94.5% of the log), the Ring is on average 4.8 times
faster than Virtuoso, the next best competitor for this query
type. The optimization of RingA speeds up those queries
considerably, being 11.9 times faster than Virtuoso. Note
that there is no difference between RingA and RingAB be-
cause splitting RPQs does not apply to queries with con-
stants. For the queries where both nodes are variables (“¬c”,
5.5% of the log), Blazegraph is 1.7 times faster, on average,
than the Ring without any optimization, and it is still slightly
faster than RingA. By splitting the RPQs, RingAB speeds up
the queries by a factor of 1.3 in this dataset, thereby outper-
forming Blazegraph by 30%.

Regarding medians, the Ring is about twice as fast as
the next best performer overall. However, both variants with
optimizations are three times faster. Blazegraph greatly out-
performs other systems in the median for RPQs with two
variables. In that case, our best variant is RingAB (second
best overall), which is 8 times slower.

Datalog is outperformed by all the other query engines,
which offer native support and planning for RPQs.

Fig. 12 shows the distribution of query times for the
different patterns. Note that Datalog returns few queries
(specifically 7) in under a second, and thus does not appear
for the scale used in the third row of plots. Also, in the case
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Fig. 12 Boxplots for the distribution of Wikidata query times.

of c * v and c /* v, the results for the Ring variants are
so close to the x-axis that they may be difficult to see. The
same occurs with Blazegraph in c | v and c /* v.

Our optimized variants, RingA and RingAB, are consis-
tently faster than the original Ring. The difference between
RingA and RingAB is noticeable only in patterns where both
nodes are variables and the RPQs match paths longer than
two. For instance, RingAB is 1.5 times faster than RingA on
the pattern v /* v. It follows that RingA is always prefer-
able over the basic Ring, as it uses the same space and is
around twice as fast. RingAB, instead, uses more space, but
can be preferred when matching complex RPQs.

We also observe that the Ring variants tend to outper-
form the other systems in most patterns involving Kleene
star (∗) or Kleene plus (+). Indeed, RingAB has the best per-
formance in 9 out of 16 patterns. However, other systems
sometimes outperform the Ring for RPQs matching paths of
fixed length 1 or 2, because those RPQs can be converted
into unions of basic graph patterns, that is, joins and unions,
which can be handled more efficiently. This strategy can be
applied for RPQs consisting of concatenations and disjunc-
tions, but not for those involving Kleene star and plus.
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Fig. 13 Experiments on complex Wikidata RPQs, showing the ratio
between RingA and RingAB compared with the time to solve each query
with RingA (left), query times for solving 6 queries with every possible
partition (middle), and boxplots for the distribution of query times in
the YAGO2s benchmark for patterns of the form v /+/+ v (right).

Splitting the RPQs. Regarding the splitting of RPQs (Sec-
tion 5.2), we only see a significant improvement on pattern
v /* v, which is the only pattern in Fig. 12 with two vari-
ables and a concatenation (where splitting is most valuable)
aside from v / v, whose instances are relatively trivial. To
better understand the effect of splitting RPQs for more com-
plex queries, we select the unique RPQs from the Wikidata
logs whose nodes are variables and whose regular expres-
sion E has at least one mandatory position. We discard those
of the form v / v since they can be solved as a join without
navigating the product graph. We obtain 73 complex RPQs.

We run the 73 complex RPQs with a timeout of 600 sec-
onds and no limit of results on RingA and RingAB, taking a
total of 1.9 and 1.7 hours, respectively. For each query, we
compute the ratio of improvement caused by splitting the
RPQ as the time of RingA divided by the time of RingAB.
Those results are shown on Figure 13 (left), where every
query is represented as a point (x, y), where x is the time
required to solve that query in RingA and y its ratio of im-
provement by splitting RPQs. We observe that the ratio tends
to increase when the query takes more time. The gains of
splitting RPQs are then more prominent on costly queries.

To evaluate how well our estimation of the number of
traversed edges works for splitting RPQs, we choose six
random queries with no constant and some mandatory posi-
tions, and solve them with all possible splits. Figure 13 (mid-
dle) shows the times of each query for each partition. The or-
ange square represents the partition selected by RingAB and
the numbers above show the number of timeouts. RingAB

selects the optimal split in four of the six queries. In the
other two, the splits chosen are close to the optimal ones,
avoiding timeouts in every case. Although the assumption
that degrees distribute uniformly for a given predicate does
not hold in practice, the heuristic works quite well since it is
not difficult to identify (and reject) very bad splits that imply
vast amounts more work; furthermore, it does not matter if
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the absolute estimated values are accurate or not, but rather
it only matters that the order induced by these estimates is
accurate for choosing the best partition.

String dictionaries. The fact that we work directly on data
and queries that are mapped from strings to integers can be
unfair with the database systems managing strings, as stor-
ing and reporting strings may induce additional space and
time overhead. Indeed, the size of the Wikidata dictionary
is considerable: 13 GB when represented in plain form as a
concatenation of strings. Jena, Virtuoso and Blazegraph in-
clude this overhead, but the Ring variants and Datalog do
not. We can largely reduce the space taken by those strings
by storing them using succinct dictionaries [47]. For exam-
ple, the variant HTFC-rp with sampling step 64 [47] com-
presses the dictionary to 833 MB, thereby increasing the
space of our structure by just 0.9 bpt. Within this space, the
structure translates an identifier to its string or vice versa
in only 3 microseconds. The impact of this translation in
our query times is minimal, adding just 0.006 seconds to the
times we report in Table 2 and Figures 12 and 13.

On the other hand, these compact dictionaries assume
that the string code is its lexicographical position. In order to
use BFS ordering in RingA and RingAB, we must add a per-
mutation [52] to convert between lexicographical and BFS
order. This permutation introduces an extra space of 1.2 GB
(1.3 bpt). The impact in the query time is again negligible,
under 50 microseconds per query. The construction of the
dictionary demands 35 minutes and 68 GB of memory.

With dictionaries, then, the working space of Ring rises
to 20.4 bpt, RingA to 21.7 bpt, and RingAB to 33.2 bpt. Those
are still 2–3 times smaller than the next smallest index.

6.2 YAGO2s Benchmark

Yakovets et al. [74] proposed using a real-world dataset,
YAGO2s [13], to test optimizations on more complex
RPQs. This dataset contains n = 171,684,850 edges,
|V | = 42,599,955 nodes, |S| = 7,709,355 subjects,
|P | = 99 predicates, and |O| = 37,618,098 objects. Its total
space is 1.2 GB (7.5 bpt) in packed form, or 505 MB using
Vertical Partitioning (3.1 bpt). The benchmark contains 55
realistic RPQs that concatenate two transitive closures of
the form v /+/+ v, which makes it harder to predict the
length of matching paths and to choose the right split.

We index YAGO2s with all variants of our system and
the most competitive baselines of Section 6.1. The space of
each index is similar to the one obtained with Wikidata. Ring
and RingA need 13.1 bpt and the second index with least
space usage is RingAB (23.8 bpt). The other systems use 2–
4 times the space of RingAB: Virtuoso uses 50.8, Blazegraph
64.6, and Jena 81.3 bpt.

On each system, we run the 55 queries [74, App. B.1]
and measure their response time. We set a timeout of 600
seconds and no limit on results, except for Virtuoso, which
has a hard-coded limit of 220 results. The right part of
Figure 13 shows the query times. The best performance
is achieved with RingAB, which is around 3.7 times faster
than our second best configuration (RingA), on average.
In terms of medians, RingAB is 20.7 times faster than
RingA. The closest baseline to RingAB is Jena, where each
query takes, on average, 14 seconds, while RingAB needs
only 3 seconds. Considering medians, the closest system
is instead Blazegraph, with 1.4 seconds, but RingAB is 7

times faster: 0.2 seconds. Although Virtuoso limits result
sizes, its median is the worst of the baselines. Even without
limit, RingAB sharply dominates the time performance and
uses only 29%–37% of the space of its competitors. Its
optimization based on splitting RPQs yields a large speedup
compared to RingA on complex queries.

String dictionaries. The strings in this dataset take 1.2 GB
in plain form, but again they can be compressed to 210 MB,
increasing the size of our data structure by only 1.3 bpt. The
time performance is the same, and its impact on the query
times is again negligible. The permutation to support BFS
ordering adds other 172 MB (1.1 bpt). The construction of
the dictionary takes 44 minutes and uses 6.6 GB.

7 Extensions

In this section we explore some less standard extensions to
RPQs that our data structures could efficiently support.

7.1 Restrictions on nodes

The language of RPQs restricts only the labels of the edges
traversed by the paths, but sets no conditions on the nodes.
However, some proposed extensions of RPQs (see, e.g., [62,
3, 28]) do allow for restrictions, called “node tests”, to be
expressed over intermediate nodes that participate in a path.
A feature our representation can efficiently support is to set
arbitrary conditions on such nodes. Our data structures can
efficiently enforce such restrictions, and even discard whole
ranges of undesired nodes.

More concretely, we can set a condition on the source
node of any predicate in an RPQ (s, E, y). Let it correspond
to the leaf containing position k in the syntax tree of ˆE. By
Glushkov’s construction, this translates into a condition on
the node of G we may be at when we reach the NFA state k.

In general, there can be a set Sk of graph nodes that are
forbidden when the NFA is at each state k. The sets Sk can
be just a handful of forbidden nodes, their complement (i.e.,
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we specify a handful of permitted nodes), or in general any
set of nodes that can be computed prior to running the RPQ.

In order to forbid the sets Sk, we reuse the array S of
Section 4.2, where S[s] marks the active NFA states with
which we already reached node s. Since our mechanism
avoids considering those nodes with states already in S[s], it
suffices that we modify S so that, instead of being initialized
at S[s] = 0, it is initialized with the kth bit already set for
all the states s ∈ Sk, for every k. Those initializations for
states s must be extended to initializing the entries S[v] for
the wavelet tree nodes v, with the intersection of the entries
of their children, just as in Section 4.2.

7.2 Powersets of predicates

The bit-parallel Glushkov simulation also efficiently han-
dles classes of symbols labeling the NFA edges (like
(l1|l2|l5), or negated labels), without building unneces-
sarily large NFAs. This can be useful for evaluating LCRs
(see Section 2), or SPARQL’s negated property sets [38],
or to perform inference over RDF graphs (e.g., handling
virtual disjunctions of inferred properties). Regarding
the latter point, for example, while the Wikidata query
service [46] does not support automated inference, the
graph does include axioms such as that mother and father
are sub-properties of parent, that child is the inverse
of parent, and so forth, where a corresponding RPQ to
capture ancestry on Wikidata may thus require a disjunction
like (parent|father|mother|ˆchild).

In general, we can permit the kth leaf of the syntax tree
of the inverted regular expression ˆE to denote a set Pk of
symbols instead of a single symbol pk. In order to handle
the search with our bit-parallel simulation of Section 3.5,
instead of setting the kth right-to-left bit of B[pk] to 1 (recall
Figs. 2 and 3), we set to 1 the kth right-to-left bit of B[p] for
every p ∈ Pk. We also set those bits in all the ancestors v of
p in the wavelet tree of B.

This requires a preprocessing time of O(M log |P |),
where M =

∑m
k=1 |Pk|, but does not affect the search

time. In terms of Theorem 1, we can now detach the
number m of positions in the regular expression (or
symbol-labeled leaves in its syntax tree) from the num-
ber M . We can then handle sets of predicates in time
O(2m +M log |P | + |A′

M| log |V | + alt(G′
M, |P |); all the

other complexities and conditions stay the same.
A classic solution that converts each set Pk =

{p1k, . . . , pik} into a subexpression (p1k| · · · |pik), instead,
corresponds to setting m = Θ(M), which has obvious
undesired consequences: note M can approach m|P |, for
example if the Pk are complements of single predicates pk.

8 Conclusions

We have shown how the ring [7], a compact representation
of labeled graphs, can be used to efficiently evaluate RPQs
by combining, in a unique way, the capabilities of (1) the
wavelet trees, to process ranges of graph nodes or labels,
and (2) the bit-parallel simulation of Glushkov automata, to
handle various NFA states simultaneously, in order to solve
regular path queries (RPQs) on the graph. We prove that the
algorithm we design to traverse the product graph induced
by the query is optimal under alternation complexity [11],
but our technique is even faster because it is able to process
groups of nodes and labels simultaneously. Wavelet trees
also enable various heuristic optimizations. As a result, our
index uses 3–5 times less space than the alternatives, while
outperforming them in many cases. On average, our index
is the fastest, outperforming the next best (Blazegraph) by a
factor of 5.1; a faster variant using 2–3 times less space than
the alternatives is 6.1 times faster than Blazegraph.

Finally, our ability to work on ranges of nodes of the
product graph allows for reporting ranges of results, instead
of necessarily enumerating them one by one. This enables
a compact representation of the set of answers from which
any concrete answer can be efficiently extracted. This av-
enue has been seldom explored in previous work.

In terms of future work, we believe that it would be inter-
esting to implement and evaluate the extensions proposed in
Section 7 in order to capture a broader class of path queries.
Given the ability of our algorithm to work efficiently with
ranges of nodes, we also think that it would be interesting to
explore other types of node ordering in order to increase the
size of these ranges, for example, based on the types asso-
ciated with the nodes. The Ring structure is currently read-
optimized, where it would be of interest to explore methods
for supporting updates. We also plan to look into the evalu-
ation of C2RPQs, i.e., the evaluation of basic graph patterns
where predicates can be (2)RPQs.

Competing interests: The authors declare no competing in-
terests.
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A Complete running example

Fig. 14 illustrates the whole process of matching the (2)RPQ
(y,l5+/ˆbus,Baq), with the NFA of Fig. 8, in the graph
of Fig. 1, as represented in Fig. 5. We use a top-down tree

to show branches in the process; Fig. 9 shows the states of
the product graph G′

M we traverse (backwards in BFS). The
top nodes of the tree illustrate what we have already done
in previous examples (edge 1 → 2 of G′

M): starting from
Lp[14 . . 15] (Baq) and D = 0001, we identified the only
edge label reaching that node, l5, that is relevant in our
NFA. The label l1 also appears in Lp[15 . . 16] because a
transition labeled l1 reaches Baq, but D & B[l1] = 0000

because our NFA does not match it; this pruned branch is
shown with a dashed arrow leading to an X. We have also
seen that the only subject of those edges labeled l5 is BA,
at Ls[10 . . 10], where the NFA is active at states 0110. We
move to BA because S[BA] = S[4] = 0000, so D = 0110

contains some unseen NFA states at this node. We mark
S[4] = 0110 to indicate that we have already reached BA
with those active NFA states. In part 3 of our process, we
find the interval of Lp corresponding to Ls[10] = 4 (BA),
Lp[Co[4] + 1 . . Co[5]] = Lp[11 . . 14], completing one step.

Three symbols appear on Lp[11 . . 14] (i.e., three edge la-
bels reach BA), but only l5 (left child) and ˆbus (right child)
match our NFA. By l5 we reach Ls[8 . . 9] using backward
search. In this interval we find two sources that, by l5, reach
BA: SA (left child) and Baq (right child), both with NFA state
D = 0110 (the same as before). Conversely, by ˆbus, we
reach Ls[16 . . 16] using backward search. There we find the
only source, SA, that reaches BA, with NFA state D = 1000.
We process the three sources in BFS order, left to right:

1. By l5 we reach BA from SA (leftmost tree node in this
level). We accept going to SA because S[SA] = S[1] =

0000 and D = 0110 has new states, so we set S[1] =
0110. In part 3 we obtain the interval Lp[1 . . 4] for SA.
This is transition 2→ 3 in the product graph.

2. By l5 we reach BA from Baq (middle tree node in this
level). Although we had already seen Baq, it was only
with states S[Baq] = S[5] = 0001, so the current state
D = 0110 has some unvisited NFA states; we set S[5] =
0111 and part 3 leads us to Lp[15 . . 16]. This is transition
2→ 4 in the product graph.

3. By ˆbus we reach BA from SA as well (rightmost tree
node in this level). Since S[SA] = S[1] = 0110 and
D = 1000, we have new states and we accept going
to SA, setting S[1] = 1110. The NFA state is still 1000
(transition 2 → 5 in the product graph), which contains
the initial state, so we report node SA as a solution to
our 2RPQ. We then continue from it, reaching Lp[1 . . 4]

using part 3.

Our BFS traversal now branches from each of the tree
nodes identified above:

1. From Lp[1 . . 4] (SA) with D = 0110, we find edges la-
beled l1, l5, and ˆbus leading to it:
(a) Our NFA cannot process l2 (D & B[l2] = 0000),

so we abandon that edge.
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Fig. 14 The whole process to match the RPQ of Fig. 8 in our graph of Figs. 1 and 5.

(b) By l5 we find the source BA, but since S[BA] =

S[4] = 0110 and D = 0110, we have already
visited BA with those active states, so we abandon
this branch too, thus avoiding to fall into a cycle.

(c) By ˆbus we reach Ls[14 . . 14] with state D = 1000.
The only source here is Ls[14] = 2 = UCh. Since
S[UCh] = S[2] = 0000, we enter this state and set
S[2] = 1000 (transition 3→ 6 in the product graph).
Furthermore, since D contains the initial state, we
report UCh as the second solution to the 2RPQ.

2. From Lp[15 . . 16] (Baq) with D = 0110, we find edges
labeled l1 and l5 leading to it:

(a) Our NFA cannot process l1, so we abandon this
branch.

(b) By l5 we reach BA again, and once again we prune
the branch to avoid falling into cycles, because
S[BA] = S[4] = 0110.

3. Finally, from Lp[1 . . 4] (SA) and D = 1000, which we
had reported, the NFA has nowhere to go, so we reject
the three possible edge labels, l2, l5, and ˆbus. The
same happens in the last tree level from Lp[5 . . 8] (UCh)
after reporting it, so we finish.
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