
Time- and Space-Efficient Regular Path Queries
Diego Arroyuelo

Univ. Técnica Federico Santa Marı́a
IMFD

Santiago, Chile
darroyue@inf.utfsm.cl

Aidan Hogan
DCC, University of Chile

IMFD
Santiago, Chile

ahogan@dcc.uchile.cl

Gonzalo Navarro
DCC, University of Chile

IMFD
Santiago, Chile

gnavarro@dcc.uchile.cl

Javiel Rojas-Ledesma
DCC, University of Chile

IMFD
Santiago, Chile

jrojas@dcc.uchile.cl

Abstract—We introduce a time- and space-efficient technique
to solve regular path queries over labeled (RDF) graphs. We
combine a bit-parallel simulation of the Glushkov automaton
of the regular expression with the ring index introduced by
Arroyuelo et al., exploiting its wavelet tree representation in order
to efficiently reach relevant states of the product graph. Our
algorithm is able to simultaneously process several automaton
states, as well as several graph nodes/labels. Our experiments
show that our approach uses 3–5 times less space than existing
state-of-the-art systems, while generally outperforming them in
query times (nearly 3 times faster than the next best, on average).

Index Terms—Regular path queries, Glushkov automaton, ring
index, succinct data structures

I. INTRODUCTION

A key feature of graph databases is the ability to query paths
of arbitrary length [1], often supported as regular path queries
(RPQs) [2], which specify a regular expression that constrains
matching paths. Consider the graph of Fig. 1 describing
transport within a city. Edges are directed and labeled with the
type of transportation (l1, l2 and l5 denote three metro lines).

An RPQ x
(l1|l2|l5)+−−−−−−−→ y finds pairs of locations reachable by

metro, where x and y are node variables, while the regular ex-
pression (l1|l2|l5)+ will match paths of length one-or-more
such that each edge has the label l1, l2 or l5. We may also

fix nodes in an RPQ, for example Baquedano
(l1|l2|l5)+−−−−−−−→ y

finds nodes reachable from Baquedano by metro.
While regular path queries have long been studied in theo-

retical works [2, 3], more recently they have been included in
practical query languages for graphs. SPARQL 1.1 introduced
property paths for RDF graphs, which extend RPQs with
inverse labels and negated edge labels [4, 5]. Other graph
query languages would later add RPQ support [6, 1, 7].
RPQs are frequently used in practice: of 208 million SPARQL
queries issued to the Wikidata Query Service [8], 24% use at
least one RPQ/property path feature [9].

The problem of efficiently evaluating RPQs has been gain-
ing increasing attention in recent years [10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35]. The traditional algorithm – used,
for example, in the theoretical literature to prove complexity
bounds – is based on representing the regular expression of

This work was supported by ANID – Millennium Science Initiative Program
– Code ICN17 002, and Fondecyt grant 1-200038.

BaquedanoUni. de Chile
l1

l1
Los Heroes

l1

l1

Santa Ana

l2 l2 bus

Bellas Artes

l5
l5

l5

l5

bus

bus

Fig. 1. Santiago metro stations with metro lines and buses

the RPQ as an automaton, defining the product graph of
the data graph and the automaton, and then applying graph
search (BFS, DFS, etc.) on the product graph [3]. While
the product graph is potentially large, algorithms can expand
it lazily during navigation. Other more recent approaches
propose the use of recursive queries [15, 20, 30], parallel [28]
and distributed [18, 19, 25, 27, 33] frameworks, indexing
techniques [14, 17, 34, 35], multi-query optimization [21],
approximation [29], just-in-time compilation [32], etc., to op-
timize RPQs. These works have mainly focused on improving
efficiency in terms of time, but not space.

Our Contribution: We introduce a novel technique to
evaluate RPQs (with inverses, aka. 2RPQs) over a compressed
representation of the graph called a ring [36]. The ring was
introduced for handling join queries in worst-case optimal time
while using almost the same space as a plain representation
of all the triples (s, p, o) denoting directed, labeled edges
s

p−→ o. The ring converts the graph into a sequence based
on the Burrows–Wheeler Transform (BWT) [37], and encodes
that sequence using a wavelet tree data structure [38]. Our
technique combines (1) the backward search capabilities of
the BWT, (2) the ability of the wavelet trees to efficiently
work on ranges of nodes or edge labels, and (3) the regularity
of the Glushkov automaton [39] of the regular expression and
the versatility of its bit-parallel simulation [40]. As a result,
we are able to search over several paths in the product graph
simultaneously. Theorem 1 shows that we spend logarithmic
time per node and edge of the product subgraph induced
by the query. Our approach uses about twice the space of
a compact data representation (since we duplicate edges to
handle reversed edges for 2RPQs). Experiments show that
we use 3–5 times less space than competing graph databases
that handle RPQs, while also offering better times overall (on
average 2.8 times faster than the nearest system: Blazegraph).

II. RELATED WORK

We present related work on efficiently evaluating RPQs and
related expression types, such as property paths in SPARQL.

Evaluating path queries: Earlier works on evaluating
path queries focused on shortest paths [10, 11]. Works later
began to focus on RPQs; these can be loosely divided into
navigational and relational approaches.

Regarding navigational approaches, Koschmieder and Leser
[12] propose to split an RPQ by its rare labels – i.e., labels
with fewer than m edges – in order to ensure more selective
start/end points, where the splits are later joined. Nolé and
Sartiani [18] evaluate RPQs using the concept of Brzozowski
derivatives, whereby the regular expression is rewritten based
on the symbols already read such that the rewritten expression
matches suffixes that complete the path. Wang et al. [19]
evaluate RPQs based on partial answers that can be connected,
allowing for these answers to not only be prefixes, but also
infixes and suffixes. Nguyen and Kim [24] split RPQs similarly
to the “rare labels” strategy, but rather attempt to minimize
the cost of the most costly sub-RPQ resulting from the split.
Wadhwa et al. [29] compute approximate RPQ results using
bidirectional random walks from the source and target node.

Other relational approaches evaluate RPQs using recursive
joins (or queries). Dey et al. [13] evaluate RPQs using either
Datalog rules or recursive SQL queries; they further return
provenance in the form of all edges involved in some or
all matching paths. Yakovets et al. [15] translate property
paths into recursive SQL queries, but note that the resulting
queries can be complex. Jachiet et al. [30] propose an extended
relational algebra with a transitivity/fixpoint operator, and
describe how RPQs (more specifically, unions of conjunctive
RPQs) can be translated to this algebra. Fionda et al. [26]
propose extended property paths, which include difference and
intersection over paths, as well constraints on nodes along the
path; some expressions require a recursion over SPARQL.

Combining both navigational/automata and recursive/rela-
tional approaches, Yakovets et al. [20] propose hybrid “wave-
plans” that can mix operators from both algebras and thus can
express novel query plans. Abul-Basher [21] propose a related
framework called “swarmguide” for optimizing multiple RPQs
at once, based on reusing a maximum common sub-automaton.

Recent approaches leverage software or hardware acceler-
ation techniques. Miura et al. [28] evaluate RPQs on top of
field programmable gate arrays (FPGAs) to enable parallelism.
Tetzel et al. [32] use just-in-time compilation to generate
native C++ code that directly evaluates the RPQ on the graph.

Indexing: Custom indexes have also been proposed for
RPQs. Gubichev et al. [14] extend RDF-3X with support
for property paths using an indexing technique called FER-
RARI [41], which encodes the transitive closure of edges with
a given label using intervals of node ids. Wang et al. [16]
propose a predicate-based indexing scheme to evaluate RPQs
over RDF graphs. Fletcher et al. [17] propose a k-path index
that indexes all paths of length up to k in a B+-tree. Kuijpers
et al. [34] use k-path indexes to optimize RPQs over Neo4j.
Liu et al. [35] populate k-path indexes with frequent paths.

RPQ fragments: Some works have focused on fragments
of RPQs. One such fragment is that of label-constrained reach-
ability queries (LCRs) [42], which match paths of arbitrary
length such that each edge label on the path is in a given set
{p1, . . . , pn}. LCRs correspond to a fragment of RPQs of the
form (p1| . . . |pn)∗ [43] that has been shown to be common
in practice [9, 44]. Works on efficiently evaluating LCRs
have primarily explored specialized indexes over the labeled
transitive closure of the graph, i.e., over precomputed tuples
of the form (u, v, L) such that node v is reachable from node
u in the graph via a path whose edges only use labels from
the set L (and, typically, where there does not exist (u, v, L′)
such that L′ ⊂ L) [42, 45, 43, 46, 47]. Given that the number
of such tuples can be prohibitively large, approaches focus on
ways to reduce index sizes while keeping query runtimes low.

Jin et al. [42] propose an LCR index that combines a span-
ning tree and an index of a partial transitive closure from which
the full closure can be computed. Zou et al. [45] propose to
decompose and build separate LCR indexes for each (strongly
connected) component in order to improve scalability for
graphs without large components. Valstar et al. [43] construct
a partial LCR index that is complete for k “landmark” vertices
with highest degree, applying a BFS variant that refers to
the index when a landmark is encountered. Peng et al. [46]
propose a pruned LCR index inspired by 2-hop labeling,
which allows a tuple (u, v, L) to be pruned from the index
if covered via an intermediate node x such that (u, x, L0)
and (x, v, L1) are indexed, and L0 ∪ L1 ⊆ L. Other works
have explored distance-aware indexes for variants of LCRs,
including label-constrained shortest path queries (LCSPs) [48];
and label constrained k-reachability queries (LCKRs) [47].

These works on LCRs – and their variants – differ from ours
in three main aspects: (1) they support a fragment of regular
expressions; (2) they assume source and target nodes to be
constant; (3) they use specialized index structures that occupy
space additional to representing the graph.

Other settings: We focus on evaluating RPQs over a
static graph on a single machine. However, other works have
looked into evaluating RPQs over RDF graphs partitioned over
multiple machines [18, 19, 25, 27, 33] or websites [22, 23].
Pacaci et al. [31] have recently explored the evaluation of
RPQs over sliding windows of streaming graph data.

Novelty: We introduce a novel technique to evaluate
(2)RPQs that is efficient both in time and space. While
some indexing schemes explore a time–space trade-off, they
occupy space additional to representing and indexing the
graph [41, 43]. To the best of our knowledge, our approach is
the first that can efficiently evaluate RPQs on a compressed
representation of the graph, and the first to show key advan-
tages of using Glushkov automata [39] in this setting: Not only
does it enable a more space-efficient bit-parallel simulation of
the automaton [40], its transitions exhibit a regularity that is
crucial to efficiently evaluating RPQs. The combination of the
backward search capabilities of the BWT [37], the ability of
the wavelet trees [38] to work on ranges of nodes/labels, and
the regularity of Glushvov’s automaton, allow us to simulate

traversal of only the product subgraph induced by the RPQ.
The bit-parallel simulation, with access to ranges of nodes and
labels, further enables processing sets of nodes of the product
graph simultaneously, speeding up the classical strategy.

III. KEY CONCEPTS

A. Regular Path Queries

Let Σ denote a set of symbols. We define a (directed
edge-labeled) graph G ⊆ Σ × Σ × Σ to be a finite set
of triples of symbols of the form (s, p, o), denoting (sub-
ject,predicate,object). Each triple of G can be viewed as a la-
beled edge of the form s

p−→ o. Given a graph G, we define the
nodes of G as V = {x | ∃ y, z, (x, y, z) ∈ G∨ (z, y, x) ∈ G}.

A path ρ from x0 to xn in a graph G is a string of the form
x0 p1 x1 . . . pn xn such that (xi−1, pi, xi) ∈ G for 1 ≤ i ≤ n.
Abusing notation, we may write that ρ ∈ G if ρ is a path in
G. We call word(ρ) = p1 . . . pn ∈ Σ∗ the word of ρ.

We say that ε is a regular expression, and that any element
of Σ is a regular expression. If E,E1 and E2 are regular
expressions, then E∗ (Kleene star), E1/E2 (concatenation)
and E1|E2 (disjunction) are also regular expressions. We may
further abbreviate E∗/E as E+, and E? as ε|E.

We define by ˆΣ = {ˆs | s ∈ Σ} the inverses of the symbols
of Σ, and by Σ↔ = Σ ∪ ˆΣ the set of symbols and their
inverses. We assume that Σ ∩ ˆΣ = ∅ and that s = ˆ(ˆs). We
denote by ˆG = {(y, ˆp, x) | (x, p, y) ∈ G} the inverse of a
graph G, and by G↔ = G ∪ ˆG the completion of G. If E is
a two-way regular expression, then so is ˆE (inverse).

A path ρ matches a regular expression E if and only if
word(ρ) ∈ L(E), where L(E) denotes the language of E.

Let Φ denote a set of variables. Let µ : Φ → Σ denote
a partial mapping from variables to symbols. We denote the
domain of µ as dom(µ), which is the set of variables for which
µ is defined. If E is a regular expression, s ∈ Φ ∪ Σ and
o ∈ Φ∪Σ, then we call (s, E, o) a regular path query (RPQ).
Let xµ be defined as µ(x) if x ∈ dom(µ), or x otherwise. We
define the evaluation of (s, E, o) on G as:

(s, E, o)(G) = {µ | dom(µ) = {s, o} ∩ Φ and there exists a
path ρ from sµ to oµ in G matching E}.

If E is a two-way regular expression over Σ, s ∈ V ∪ Φ
and o ∈ V ∪Φ, we call (s, E, o) a two-way regular path query
(2RPQ). We define the evaluation of the 2RPQ (s, E, o) on G
as the evaluation of the RPQ (s, E′, o) on G↔, where E′ is
the rewritten form of E using only atomic inverses.

Example. Take the graph G of Fig. 1 and the RPQ
(x, (l1|l2|l5)+, y), where x, y ∈ Φ are variables. Infinitely
many paths in G match the expression (l1|l2|l5)+, including:

UCh l1 LH l1 UCh
UCh l1 LH l1 UCh l1 LH

and so forth (abbreviating node labels). The evaluation of the
RPQ on G will return all mappings such that x maps to the
start node of some such path, and y maps to the end node
of the same path. For example, from the first path, we will

[0000] = 0000T

T

T

[0001] = 0000

[0010] = 0011

[0011] = 0011

. . .

T [1111] = 0111

T

T [0100] = 0011
B

B

F = 0001

[a] = 0100

[b] = 0011
0 31 2

b

b

ba b

Fig. 2. The Gluskov automaton of the regular expression a/b∗/b, and its
bit-parallel representation on the right.

return a solution µ such that µ(x) = UCh, µ(y) = UCh. �

B. Product Graph

A common approach for evaluating an RPQ (s, E, o) on
G involves computing the product graph of G [3]. First we
use Thompsons’ construction to convert the regular expression
E into a non-deterministic finite automaton (NFA) ME =
(Q,ΣE ,∆, q0, F), where Q denotes the set of states, ΣE ⊆ Σ
the set of symbols used in E, ∆ the transitions, q0 the initial
state, and F the set of accepting states. Letting V denote the
nodes of G, the product graph GE ⊆ (V ×Q)× (V ×Q) of
G with respect to E is a directed graph defined as follows:

GE = {((x, qx), (y, qy)) | there exists p ∈ ΣE such that
(x, p, y) ∈ G and (qx, p, qy) ∈ ∆}.

The RPQ can then be evaluated using graph search (e.g., BFS,
DFS, etc.) to find paths in the product graph GE that start
from some node (x, q0) ∈ V × {q0} and end in some node
(y, qf) ∈ V × F (where x = s if s ∈ Σ, and y = o if o ∈ Σ).

C. Bit-parallel Glushkov Automata

Consider a regular expression E on alphabet Σ with m
occurrences of symbols in Σ. Compared to Thompson’s con-
struction of an NFA from E, Glushkov’s [39, 49] has the
disadvantage of generating Θ(m2) edges in the worst case,
and needing O(m2) construction time [50]. In exchange, it
has various useful properties for our purposes:

1) The NFA has no ε-transitions.
2) The NFA has exactly m+ 1 states, worst-case optimal.
3) All the transitions arriving at a state have the same label.
These properties imply the following important fact.

Fact 1. In a Glushov NFA, the states reached in one step
from a set X of states by symbol c are the intersection of
those reached from X in one step and those reached by c
from any state.

Example. Fig. 2 (top) shows the Gluskov automaton for
a/b∗/b. Take the states X = {0, 2}. The states reachable
from X in one step via b are {2, 3}, i.e., the intersection of
{1, 2, 3} reachable in one step from X via any symbol and
{2, 3} reachable in one step via b from any state. �

This property enables the bit-parallel simulation of the
NFA [40]. This simulation represents NFA states as bits in
a computer word, so each configuration of active and inactive
states (bits set to 1 and 0, respectively), correspond to a state

in the DFA according to the classic powerset construction.
The simulation operates on all the states in parallel by using
the classic arithmetical and logical operations on computer
words. Assume for simplicity that the bits of the NFA states
fit in a single computer word; we discuss the general case
later. Further assume that the alphabet is an integer range
Σ = [1 . . σ]. The simulation maintains the following variables:
• A computer word D holding m+1 bits tells, at every step,

the active NFA states, as discussed. Assume the initial
state corresponds to the highest bit.

• A table B[1 . . σ] of computer words indicates with 1s, at
each B[c], the states targeted by transitions labeled c.

• A table T [0 . . 2m+1−1] stores in T [X], for each possible
(m+ 1)-bit argument X representing a set of states, the
states reachable from X in one step by any symbol.

• A computer word F marks with 1s the final NFA states.
The simulation is then carried out as follows:

1) We set D ← 2m to activate the initial state.
2) If D & F 6= 0, then we have reached a final state and

accept the word read (recall that ‘&’ is the bitwise-and).
3) If D = 0, then we have run out of active states and reject.
4) For each input symbol c, we use Fact 1 to update D as

follows, so the new active states are those that are reached
from the current ones and also reached by symbol c:

D ← T [D] & B[c], (1)

5) Return to point 2.

Example. The Glushkov automaton of a/b∗/b and its
bit-parallel representation is shown in Fig. 2. Given a
string S = abba, we initialize D ← 1000 with the
initial state 0 activated. We read S[1] = a and update
D ← T [1000] & B[a] = 0100 & 0100 = 0100,
activating state 1. We read S[2] = b and update
D ← T [0100] & B[b] = 0011 & 0011 = 0011,
activating states 2 and 3. We report here the endpoint
of a match since D & F = 0011 & 0001 6= 0000. To
find other endpoints, we next read S[3] = b and update
D ← T [0011] & B[b] = 0011 & 0011 = 0011, reporting
this position as well. Finally, we read S[4] = a and update
D ← T [0011] & B[a] = 0011 & 0100 = 0000. At this point
we run out of active states and finish. �

The space of the simulation is O(2m + σ), instead of the
worst-case O(2mσ) of a classic DFA implementation. The
tables are built in time O(2m) with lazy initialization for B.

A similar simulation can be used to read the text in reverse
order [40] by building a table T ′[0 . . 2m − 1] where T ′[X]
marks with 1s the states that can reach some state in X in one
step, initializing D ← F and, for each symbol c, updating

D ← T ′[D & B[c]], (2)

and accepting when D & 2m 6= 0.
Bit-parallelism uses the RAM model of computation, where

all the arithmetical and logical operations over a w-bit word
take constant time; it is usual to assume w = Θ(log n), where

(l1,UCh,LH)

(l1,UCh,Baq)

(l1,LH,UCh)

(l1,Baq,UCh)

(l2,SA,LH)

(l2,LH,SA)

(l5,SA,BA)

(l5,BA,SA)

(l5,BA,Baq)

(l5,Baq,BA)

(bus,SA,BA)

(bus,UCh,SA)

(bus,BA,UCh)

(^bus,SA,UCh)

(^bus,UCh,BA)

(^bus,BA,SA)

(SA,UCh,^bus)

(SA,LH,l2)

(SA,BA,l5)

(SA,BA,bus)

(UCh,SA,bus)

(UCh,LH,l1)

(UCh,BA,^bus)

(UCh,Baq,l1)

(LH,SA,l2)

(LH,UCh,l1)

(BA,SA,l5)

(BA,SA,^bus)

(BA,UCh,bus)

(BA,Baq,l5)

(Baq,UCh,l1)

(Baq,BA,l5)

L s Lp

l1

l2

l5

bus

^bus5

3

2

1

4

5

3

2

1

4

Nodes

Edges

UCh

LH

BA

Baq

SA(SA,bus,UCh)

(SA,l5,BA)

(SA,^bus,BA)

(UCh,l1,LH)

(UCh,l1,Baq)

(UCh,bus,BA)

(UCh,^bus,SA)

(LH,l1,UCh)

(LH,l2,SA)

(BA,l5,Baq)

(BA,bus,SA)

(BA,^bus,UCh)

(Baq,l1,UCh)

(Baq,l5,BA)

(SA,l2,LH)

Lo

(BA,l5,SA)

Fig. 3. The triples representing the completion of the graph of Fig. 1, adding
a reverse edge labeled ˆbus for each edge labeled bus (l1, l2 and l5 are
considered bidirectional). The triples are presented in three rotations; the last
column in each rotation defines a component of the ring.

n is the data size. In our case, if m + 1 > w, then we
need to use d(m + 1)/we computer words to hold D, F ,
and every entry of B and T . In this case, all the time and
space complexities get multiplied by O(m/w). If we want
to avoid the exponential space and time O(2m), we can split
table T vertically into d-bit subtables T1, . . . , Td(m+1)/de, so
that if we partition X = X1 · · ·Xd(m+1)/de, then T [X] =
T1[X1] | · · · | Td(m+1)/de[Xd(m+1)/de], where “|” denotes the
bitwise-or. This reduces the space to O((m/d)2d + σ) and
multiplies time by O(m/d) instead of O(m/w), for any
desired 1 ≤ d ≤ min(w,m+1) [40]. We assume for simplicity
that m = O(w) and use O(2m) space in the paper, but in
Theorem 1 we recall that we can curb the exponential space.

D. The Ring

The ring [36] is a novel representation for a set of triples
(s, p, o), supporting worst-case optimal joins [51]. It regards
triples with different rotations, (s, p, o), (p, o, s), or (o, s, p).
What the ring actually stores are those objects, subjects, and
predicates separated in three sequences, Lo, Ls, and Lp,
respectively, as follows (where n is the number of triples):
• Lo[1 . . n] enumerates the objects o from the list of the

lexicographically sorted triples (s, p, o).
• Ls[1 . . n] enumerates the subjects s from the list of the

lexicographically sorted triples (p, o, s).
• Lp[1 . . n] enumerates the predicates p from the list of the

lexicographically sorted triples (o, s, p).
The concatenation Lo ·Ls ·Lp is akin to the Burrows–Wheeler
Transform (BWT) [37] of the concatenation of all triples [36].

Example. Fig. 3 shows the triples for the completion of the
graph of Fig. 1, using abbreviated node labels. On the right
we map node and edge labels to integers, and use this integer
order for sorting. The leftmost rotation lists triples sorted
by (s, p, o); the last column (o) of this rotation forms the
sequence Lo. The middle rotation sorts triples by (p, o, s),
and its last column (s) forms the sequence Ls. Finally, the

BALH UCh Baq SA UCh UCh BA

UCh LHBaqLH BA SA BaqSA BAUCh BA SA UCh UCh BA SA

SA UCh LH BA Baq

SA UCh LH BA Baq

l5 busl2 ^bus l1 l2l1 l1bus l5 ^bus bus l5 l1 l5^bus

0 16141084

5

3

2

1

4

SA

UCh

LH

BA

Baq

l1

l2

l5

bus

^bus5

3

2

1

4

Nodes

Edges

3 5 2 2 3 1 4 1 5 4 4 1 2 2 4 1

SA

3 4 2 4 3 5 4 1 2 1 1 5 1 2 2 4

SA

2 3 4 4 1 5 1 2 1 3 5 4 3 1 35

SAUCh LHBA BABaq

l1 l2 l5 bus ^bus

=

=

=

=

Lo

Lp

L s

Co

Fig. 4. The ring structure for the completion of the graph of Fig. 1, adding
a reverse edge labeled ˆbus for each edge labeled bus (l1, l2 and l5 are
bidirectional). We also show how the last triple in Lp is tracked.

rightmost rotation sorts the triples by (o, s, p) and its last
column (p) forms Lp. The ring is then the concatenation of
the three sequences, Lo, Ls and Lp. �

With this arrangement, a range in Lo corresponds to a
lexicographic interval of triples (s, p, o). In particular, a range
may represent all the triples with a specific subject s (i.e.,
starting with s), and a smaller range may represent all the
triples with subject s and predicate p (i.e., starting with
(s, p, ...)). A range in Lo can also represent a range of subjects
sb . . se, and even a subject s followed by a range of predicates
ps . . pe. Analogously, ranges in Ls correspond to lexicographic
intervals of triples (p, o, s) and ranges in Lp correspond to
lexicographic intervals of triples (o, s, p). Note that, in the
three strings, the range [1 . . n] represents all the triples and a
range of size 1 represents an individual triple.

Example. In Fig. 3, the range of positions [5 . . 8] of Lo

corresponds to the triples (s, p, o) where s = UCh, and the
smaller range [5, 6] to the triples (s, p, o) where s = UCh
and p = l1. If we need a range for the triples where p = l5
and o = BA, we instead use the range [8 . . 9] of Ls, which is
sorted in order (p, o, s). �

The ring retrieves triples using so-called LF-steps, defined
on array Lp (and analogously on Ls and Lo), as follows:

LFp(i) = Cp[c] + rankc(Lp, i), (3)

where c = Lp[i], Cp[c] counts the occurrences of symbols
smaller than c in Lp, and rankc(Lp, i) counts the occurrences
of c in Lp[1 . . i]. The subject of the triple for Lp[i] is Ls[i

′]
for i′ = LFp(i), and the object is Lo[i′′] for i′′ = LFs(i

′). It
further holds that i = LFo(i′′), where the predicate is at Lp[i].

Example. Fig. 4 shows the ring of Fig. 3, now directly as
sequences Lo, Ls, and Lp of integers. We still write the
abbreviated names over the numbers for readability. Note that,
for example, Lp can be partitioned into the triples (o, s, p)
starting with objects 1 (SA), 2 (UCh), 3 (LH), 4 (BA), and 5 (Baq),

which we indicate below the sequence, and whose endpoints
are marked in the array Co, shown on the bottom.

Consider the triple referenced from Lp[16]. The
value Lp[16] = 3 (l5) gives the predicate. It refers
to the object 5 (Baq) because it belongs to the range
Lp[15 . . 16] = Lp[Co[5] + 1 . . Co[5 + 1]]. To find the
corresponding subject, we note that this is the fourth 3 (l5)
in Lp. Then, if we go to the fourth position in the area of l5
in Ls, Ls[7 . . 10], which is Ls[10], we learn that the subject
is Ls[10] = 4 (BA). Indeed, LFp(16) = 10. Thus, the full
triple is BA

l5−→ Baq. Furthermore, Ls[10] is the second 4 in
Ls, so if we go to the corresponding position Lo[12] (note
LFs(10) = 12) we cyclically find Lo[12] = 5 (Baq), the object
of the triple. We indeed return to position Lp[16] if we map
Lo[12], the second 5 in Lo, to Lp. Again, LFo(12) = 16. �

The key to solving multijoins with the ring is the so-called
backward search, which computes in batch all the LF-steps
in a range. Consider a range Lp[bo . . eo] listing, say, all the
triples with a specific object o (i.e., all the triples (o, s, p) for
any s and p). The backward search by some specific predicate
p gives the range Ls[bp . . ep] corresponding to all the triples
with object o and predicate p (i.e., all the triples (p, o, s) for
any s). This is computed with the following formula, which
extends the LF-steps (Eq. (3)) to ranges [52, 36]:

bp = Cp[p] + rankp(Lp, bo − 1) + 1, (4)
ep = Cp[p] + rankp(Lp, eo). (5)

Listing the subjects s in Ls[bp . . ep] then yields all the triples
with that specific predicate p and object o, for example.

Example. Continuing our example, assume we wish to find
all subjects for triples with predicate 3 (l5) and object 4
(BA). Let us start from Lp[11 . . 14], corresponding to object
BA. If we apply a backward search step from bo = 11 and
eo = 14, on the label 3 (l5) using Eqs. (4) and (5), we obtain
Ls[bs . . es] = Ls[8..9] = 〈1, 5〉, showing that we arrive at BA
by l5 from sources Ls[8] = 1 (SA) and Ls[9] = 5 (Baq). �

The ring uses a data structure called a wavelet tree [38],
described next, to index each of the sequences Lo, Ls, and
Lp. This representation implements backward searches in
O(log |Σ|) time, and worst-case optimal joins with m triple
patterns in time O(Q∗m log |Σ|), where Q∗ is the AGM bound
of the query [53, 36].

E. Wavelet trees

The wavelet tree represents a string L[1 . . n] over an al-
phabet [1 . . σ] as a perfect binary tree with σ leaves, one per
symbol, so that the cth left-to-right leaf represents symbol c.
Each internal wavelet tree node v that is the ancestor of leaves
cs . . ce represents the subsequence L〈cs,ce〉 of L formed by
the symbols in cs . . ce. Instead of storing L〈cs,ce〉, node v
stores a bitvector W〈cs,ce〉, so that W〈cs,ce〉[i] = 0 iff the leaf
representing symbol S〈cs,ce〉[i] descends by the left child of

l1

busl1

3 3 3 3

l5l5 l5 l5

L <3,3>

L <2,2>

L <4,4> 4 4 4

bus bus bus

l5 busl2 ^bus l1 l2l1 l1bus l5 ^bus bus l5 l1 l5^bus

0 0

1 1 2 1 12

l2 l1 l1 l2 l1

0

L <4,5>

<4,5> 0

5 4 4 5 5 4

^bus bus ^bus ^bus bus

1 0 0 1 10 0 1 0

3 1 1 2 1 3 3 1 32

l2 l5 l1 l1 l2 l5l5 l1 l5

0 1 0 0 1 1

1 0 1

L <1,1> 1 1 1 2 2

l1 l1 l1 l2 l2

1

l1

L <5,5> 5 5 5

^bus ^bus ^bus

(0000)(0000)

(0000) (0000)

(0111)

(0100)

(0100)

(0011)

(0011)

0 0 1 1 0 1 0 0 0 0 1 1 0 0 01<1,5>

2 3 4 4 1 5 1 2 1 3 5 4 3 1 35<1,5>L

L <1,3>

<1,3>

<1,2>

L <1,2>

W

W W

W

Fig. 5. The wavelet tree of the sequence Lp of Fig. 4. The short diagonal
arrows track L[5]. The slanted bitvectors on the nodes refer to the B entries
of the automaton of Fig. 6.

v. The leaves are conceptual and not stored. All the bitvectors
stored at the internal wavelet tree nodes amount to n log σ bits
(base 2), i.e., the same as a plain representation of L.

The wavelet tree obtains L[i] in O(log σ) time as fol-
lows. Let v be the wavelet tree root, which stores bitvector
W = W〈1,σ〉 where W [i] = 0 indicates that L[i] ∈ [1 . . σ/2];
otherwise L[i] ∈ [σ/2+1 . . σ] (we assume σ to be a power of
2 for ease of presentation). In the first case, L[i] = L〈1,σ〉[i]
corresponds to L〈1,σ/2〉[i

′], where i′ = rank0(W, i) and we
continue recursively by the left child of v with position i′.
In the second case, L[i] corresponds to L〈σ/2+1,σ〉[i

′′], where
i′′ = rank1(W, i) and we continue recursively by the right
child of v with position i′′.

Operation rank on bitvectors can be done in O(1) time
adding only sublinear space on top of the bitvector [54, 55].
Therefore, in time O(log σ) we arrive at a leaf and deter-
mine L[i]. The total space of the wavelet tree is n log σ +
o(n log σ) +O(σ log n) bits, the latter term being needed for
the tree pointers. Note that O(σ log n) also absorbs the space
of the arrays Cx used for backward search.

A similar algorithm can be used to compute rankc(L, i). We
start at the wavelet tree root v and, if c descends by the left
child, we recursively go left with i← rank0(W, i); otherwise
we recursively go right with i← rank1(W, i). When we arrive
at the leaf c, the current value of i is the answer. Furthermore,
the number of leaf positions to the left of c is precisely C[c],
which directly gives the values of the LF and the backward
search formulas (Eqs. (3) to (5)).

Example. Fig. 5 shows the wavelet tree of sequence Lp for our
running example (ignore the slanted bitvectors for now). To
compute rank4(Lp, 5), we start at position i ← 4 of the root
(the short diagonal arrows track our position). Since leaf 4 is
to the right, we go right and set i ← rank1(W〈1,5〉, 5) = 3.
On the right child of the root, we see that leaf 4 descends to
the left, so we go left with i← rank0(W〈4,5〉, 3) = 2, arriving

. . .

[1111] = 1110T’

[0001] = 0110

[0010] = 0110

[0000] = 0000T’

T’

T’

[0011] = 0110T’

T’ [0100] = 1000

B

B

B

B

B [l1] = 0000

[l2] = 0000

[bus] = 0000

[^bus] = 0100

[l5] = 0011

F = 0001

0 31 2
^bus

l5

l5 l5

l5

Fig. 6. The Glushkov automaton for the regular expression ˆbus/l5∗/l5, its
bitvector F and table B, and the transition table T ′ of its reversed automaton.

at the leaf of 4. Thus rank4(Lp, 5) = i = 2. The lengths of
all the leaves to the left add up to Cp[4] = 10, so adding i
we obtain position 12 = LFp(5). �

Wavelet trees can be used for many other purposes [56,
57]. We will indeed make use of their extended capabilities
for our algorithm. A good warmup is the following algorithm
to enumerate all distinct symbols in L[b . . e]: We start at the
root and descend to the left with the interval L〈1,σ/2〉[b′ . . e′],
where b′ = rank0(W, b − 1) + 1 and e′ = rank0(W, e). We
also descend to the right with the interval L〈σ/2+1,σ〉[b

′′ . . e′′],
where b′′ = rank1(W, b − 1) + 1 and e′′ = rank1(W, e). We
abandon every empty interval and instead report every leaf
we arrive at (we later exemplify more complex variants of
this algorithm). The total time is then O(log σ) per distinct
symbol reported, irrespective of the total number of symbols.

IV. OUR APPROACH

In order to evaluate RPQs, we will use part of the ring’s
structure to navigate backwards all the paths that match a given
2RPQ. More precisely, we use the wavelet trees representing
sequences Lp and Ls, as well as all the arrays C∗.

The sets of subjects and objects are equal and correspond
to the nodes V in the graph; each node may act as a subject
(i.e., edge source) or as an object (i.e., edge target). The set
of predicates P ⊆ Σ↔ corresponds to the edge labels of G↔.

We will first focus on 2RPQs of the form (x,E, o), where
x ∈ Φ and o ∈ V . We will build the Glushkov automaton
for E and use it to navigate backwards, from objects towards
subjects. Since we use the NFA backwards, we will start from
its final states, D = F , use the reverse Glushkov simulation
of Eq. (2), and report a valid binding x = s at every node
s ∈ V where the initial NFA state is activated. The navigation
will start from the range of o in Lp.

This technique also handles 2RPQs of the form (s, E, y),
where s ∈ V and y ∈ Φ, by reversing E and searching instead
for (y, ˆE, s). We will later consider the other kinds of 2RPQs.

We note that since the alphabet of E is P , our vector
B[1 . . |P |] for the bit-parallel NFA simulation is of size
O(|P |), but still preprocessing the RPQ takes time O(2m)
with lazy initialization. This adds a working space usage of
O(2m + |P |) on top of the ring.

Example. Assume we are at station Baq and want to know
what we can reach by following via line 5 (l5) taking the bus
once. The corresponding RPQ is (Baq,l5+/bus,y), and the
reversed regular expression is ˆE = ˆbus/l5∗/l5, equivalent
to the example a/b∗/b of Fig. 2. We have converted bus to

ˆbus to reverse the edge direction (we do not do this for l5,
which is bidirectional). Fig. 6 shows the Glushkov automaton
for this regular expression; note that B[ˆbus] corresponds to
B[a] and B[l5] to B[b] in Fig. 2, and that the alphabet of the
regular expression is the set of predicates.

We first start from node 5 (Baq) and work backwards. We
then start from Lp[Co[5] + 1 . . Co[6]] = Lp[15 . . 16], and
report all the nodes that we can reach in reverse from there
that activate the initial state of our automaton, 0. �

We will virtually traverse the relevant subgraph G′E of the
product graph GE backwards. To simulate this process, we
perform a sequence of (backward) NFA steps, traversing in
reverse the possible paths ρ that match ˆE. The traversal
abandons every branch where the NFA runs out of active
states. Every time it reaches the initial state we report the
current node. Each NFA step starts and ends at a range of
Lp corresponding to the current object (initially, o), and is
simulated in the following three parts:

1) We find all the predicates labeling edges that lead to
the current object. This leads us from the interval in Lp

(corresponding to the object) to several intervals in Ls

(corresponding to distinct predicates for that object).
2) We find the subjects of edges labeled with each such

predicate. This leads us from each interval in Ls (corre-
sponding to a predicate leading to our object) to several
intervals in Lo (corresponding to distinct subjects).

3) We regard each of those subjects as an object again, by
mapping each resulting range in Lo to the corresponding
range in Lp. We only need Co to do this, not Lo.

After steps 1 and 2, we abandon the branch if the resulting
range is empty. After step 2, we perform the NFA transition
and abandon the branch if we run out of active states (D = 0).
We also report the subject if the initial state is active in D.

Note that, in step 1, we are only interested in predicates
that lead to some node in G′E . That is, we want predicates
that lead not only to the current object, but also to active NFA
states. In step 2, we are only interested in subjects that have
not been visited before with the same NFA states, so as to
avoid falling into loops of G′E .

In terms of the product graph, visiting a node s of G
with a set D of active NFA states corresponds to traversing
simultaneously all the nodes of G′E that combine s with an
active state in D. Thus, bit-parallelism enables us to perform
significantly less work than classical techniques that visit G′E
node by node. Furthermore, we will combine Fact 1 with
the ability of wavelet trees to work on ranges of symbols to
carry out steps 1 and 2 in a way that spends time only on
the resulting predicates and subjects, thereby bounding our
time complexity in terms of the subgraph of the size of G′E ,
without spending any effort to discard edges that connect G′E
with other nodes of GE . We now describe each part in detail.

A. Part one: Finding predicates from objects

The first part finds the distinct predicates p that lead to
(i.e., precede in the (o, s, p) triples) the current range of

objects. We will use the wavelet tree of Lp to discover all
the distinct predicates p in Lp[bo . . eo], as described at the
end of Section III-E.

Next, we identify predicates p that lead to a currently active
NFA state, i.e., such that D & B[p] 6= 0 per Eq. (2). We will
find them efficiently thanks to Fact 1, and an enhancement of
the wavelet tree of Lp, where we will have B[·] entries not
only for the predicates p, but also for all the other |P | − 1
nodes in the wavelet tree of Lp: Let v be a wavelet tree node;
then B[v] will be the bitwise-or of the B[p] entries of all the
symbols p descending from v. This enables us to confine the
influence of p to the table B in the bit-parallel simulation.

Example. The B[·] entries for all the nodes of the wavelet tree
of Lp are written as slanted bitvectors on the nodes in Fig. 5.
Those on the leaves correspond to the entries in Fig. 6, and
those on internal nodes to the bitwise-or of their children. �

This enhancement can be built with lazy initialization from
the B[p]s in O(m log |P |) time, by starting with all B[v] =
0 and working upwards only from the nonzero entries B[p],
doing B[v]← B[v] | B[p] for every ancestor v of p. The extra
space is still O(|P |), and we can store the entries B[v] in heap
order, following the (perfectly balanced) wavelet tree of Lp.

With this extension of B, we proceed as follows. We start
from the root v of the wavelet tree of Lp, with the range
[b . . e] = [bo . . eo] and bitvector D. If D & B[v] = 0,
we stop. Otherwise, if v is a leaf p, then we report the
interval Ls[b . . e]. Otherwise, we recursively continue with
the left and right children vl and vr of v, with the intervals
[b . . e] = [rank0(W, b − 1) + 1 . . rank0(W, e)] for vl and
[b . . e] = [rank1(W, b− 1) + 1 . . rank1(W, e)] for vr.

Example. To start the search from Lp[14 . . 15] and D =
0001, we must first find all distinct values in the range that
label transitions leading to an state active in D. We start
from the wavelet tree root v〈1,5〉 of Fig. 5, with the range
L〈1,5〉[14 . . 15]. We descend to the left child, v〈1,3〉 since
B[v〈1,3〉] & D = 0011 & 0001 6= 0000 and thus there are rel-
evant transition labels below it. When descending, we map the
range to L〈1,3〉[9 . . 10] (because rank0(W〈1,5〉, 14−1)+1 = 9
and rank0(W〈1,5〉, 15) = 10). From v〈1,3〉, we do not descend
to v〈1,2〉 since B[v〈1,2〉] & D = 0000 & 0001 = 0000 and thus
no relevant transition labels descend from it (though there is
a 1 in our range L〈1,3〉[9 . . 10] indicating an l1 reaching Baq,
it does not lead to active NFA states). Instead, we descend to
v〈3,3〉 because B[v〈3,3〉] & D = 0011 & 0001 6= 0000. Since
it is a leaf, we have found a relevant label (3, i.e., l5) reaching
our range (i.e., Baq). Its range is L〈3,3〉[4 . . 4], which added to
the number of leaves in l1 and l2 (equivalent to Cp[3] = 6)
yields the range Ls[10 . . 10], completing the backward search
step for symbol l5 (recall Eqs. (4) and (5)).

On the other hand, we do not descend from v〈1,5〉 to its right
child, v〈4,5〉, because B[v〈4,5〉] & D = 0100 & 0001 = 0000.
Even if we did, we would obtain an empty interval in L〈4,5〉

because there are no 4s or 5s in L〈1,5〉[15 . . 16]. �

Note that, if D & B[v] 6= 0, then the same holds for at least
one of the two children of v. As a consequence, all the wavelet
tree nodes we traverse are ancestors of qualifying leaves. Since
we spend constant time on each such ancestor, we can bound
the total cost of this part by charging O(log |P |) to each useful
predicate p, for which we report the interval Ls[bp . . ep]. We
do not pay any extra cost on the useless predicates thanks to
Fact 1, because we must intersect every B[p] with the same
set D of active states. In terms of the product graph traversal,
where we are simultaneously processing all the nodes that
combine o with the active states in D; this technique allows
us to obtain all the distinct edges of G′E that we can traverse
from the current nodes of G′E .

B. Part two: Finding subjects from predicates

The second part of the process starts at each of the ranges
Ls[bp . . ep] reported by the first part, and traverses the wavelet
tree of Ls to find all the distinct subjects s in that range,
mapping them to an interval Lo[bs . . es]. By Fact 1, the set
of active NFA states will be the same, D ← T ′[D & B[p]]
(Eq. (2)), for all those subjects. If D contains the initial state,
we report that subject s starts a path of the 2RPQ (i.e., we
report (s, o) as an answer to the query).

Example. Once we obtain the range Ls[10 . . 10] = 4 (BA) from
edge label 3 (l5), identifying the edge BA

l5−→ Baq, we update
D ← T ′[D & B[3]] = T ′[0001 & 0011] = T ′[0001] = 0110,
activating states 1 and 2 in our NFA (see Fig. 6). This new
state D is independent of the subject we arrived at. �

We need to prevent falling into loops, however: If we arrive
at a subject s with a subset of the NFA states we have already
visited s with, we must stop because we are repeating nodes
in the product graph. To implement this filter efficiently, we
will again exploit Fact 1 and enhance the wavelet tree of Ls.

For each subject s we store a bitvector D[s] with all the
active NFA states we already reached s with. This adds O(|V |)
working space, but can be zeroed in constant time with lazy
initialization. If we arrive at s and D | D[s] = D[s], then s
can be skipped; otherwise we set D ← D & ∼D[s] and then
D[s]← D | D[s], where “∼” is bitwise-not. This leaves only
the NFA states that are new to s in D, and adds to D[s] the
new active states we have arrived at s with. We initially mark
the states F on the node o where we start the search.

We use the same technique of storing D[·] entries at wavelet
tree nodes v of Ls, so as to avoid descending by a branch if
all the subjects below it have already been visited with all
the active states in D. For this, D[v] must be the intersection
of those D[s] cells below v. If D | D[v] = D[v], we prune
the wavelet tree traversal at node v, otherwise we set D[v]←
D | D[v] and continue by both left and right children. Just as
for predicates, there is always a useful descendant leaf s from
the nodes v we traverse, and so the total cost is O(log |V |)
per useful subject arrived at.

UCh BA Baq

0001

0110

1000

l5

^bus

l5

SA

^bus ^bus

l5 l5

l5

l5

l5l5

^bus

^bus

3

6 5

2 4

1

Fig. 7. The visited part of the product graph to match the DFA of Fig. 6 in
our graph of Figs. 1 and 4. We show in the rows the DFA states (i.e., sets D
of NFA states) we visit, and label the graph edges for readability.

Not visiting s with a subset of the NFA states of previous
visits ensures that we never work more than classical product
graph traversals: every time we reprocess a node s of G, we
must be including a new NFA state in D (instead, we can
be faster because we handle several NFA states together, as
explained). Again, we can efficiently filter the subjects with
the wavelet tree thanks to Fact 1, because all the subjects s
are visited with the same set of states D.

C. Part three: Mapping subjects back to objects

In this third part, we report each useful subject s we must
consider, with its corresponding state D. In order to proceed
with the next step of the simulation, we must map this range
of subjects to the same range of nodes seen as objects. This is
easily done with the array Co, where Co[s] is the number of
symbols smaller than s in Lo. Thus, Lp[Co[s]+1 . . Co[s+1]]
corresponds to the interval of Lp that is aligned to object s.

Then, as explained, we restart part one with each s for which
Co[s+ 1] > Co[s], with state D.

Example. Fig. 7 shows the traversed part of the product
graph for our running example, considering the DFA states.
The numbers in the nodes represent the steps. The processes
illustrated along the preceding examples aim to the (reverse)
traversal 2

l5−→ 1. �

D. Other kinds of RPQs

The algorithm we have described reports all the subjects
(i.e., nodes) s ∈ V for which there is a path matching E
towards some object in the range we started with. If we start
with the Lp range for a single object o (i.e., solving (x,E, o)
with x ∈ Φ and o ∈ V), then the answers to the query are all
the pairs (s, o). We can use this same algorithm for solving
(s, E, y), where s ∈ V and y ∈ Φ, by converting it into
(y, ˆE, s) (as we did in our running example).

We can also handle RPQs where both s, o ∈ V are fixed by
starting from o and processing ˆE, stopping when we reach s
or we run out of active states (or vice versa with E).

The most complex case, (x,E, y) with x, y ∈ Φ, has
variables for both subject and object, where we must find all

the pairs (s, o) connected by a path matching E. We could
handle this query by launching |V | queries (x,E, o), one per
possible object o, but this would be very inefficient if many
objects do not lead to answers (s, o). In particular, we could
work on edges that are not in G′E . Instead, we will use the
ability of the BWT and of wavelet trees to work on ranges
of symbols, not only on individual ones. Instead of starting
with each specific object o, we will start with the full range
in Lp. Exactly the same algorithm we have described for
queries (x,E, o), now started with the full range, obtains all
the subjects s leading to some object by E. The edges traversed
are in G′E because each such subject s does reach some object
o via E. Then, for every subject s we arrived at, we run the
RPQ (s, E, y), and report (s, o) for each object o found in this
search. Since we run the queries (s, E, y) only from subjects
that will produce some result, this second traversal also visits
edges in G′E . Alternatively, we can first find the objects o that
are reachable with E from some subject, and then run only
the useful queries (x,E, o).

The first step of this solution, which starts from the full Lp

range, uses the power of the ring to handle a range of nodes
simultaneously, traversing in one step a set of nodes of G′E
that relate a number of nodes of G with the same set of NFA
states. This provides a second speedup over a classical node-
wise traversal of G′E . The union of the queries (s, E, y) we
perform amounts to a second traversal of G′E .

E. Time complexity

The following theorem shows that the cost of our algorithm
is essentially bounded by the size of the subgraph G′E of the
product graph GE induced by the query.

Theorem 1. Let G be a directed labeled graph over nodes V
and an alphabet P of edge labels. Consider an RPQ (x,E, y)
where x or y are variables, E has m literals, and the computer
word holds O(m) bits. The ring representation of G can return
all the matching pairs (s, o) for the RPQ in time O(2m +
m log |P | + |G′E | log |G|), where G′E is the subgraph of the
product graph GE of G and Glushkov’s automaton A of E,
induced by all the paths ρ from any node (sµ, i) to any node
(oµ, f), where µ is an evaluation of (x,E, y), and i and f are
initial and final states of A. The working space of the query is
O(m(2m+ |P |+ |V |+maxρ)) bits, where maxρ is the length
of the longest path ρ. For any desired parameter 1 ≤ d ≤ m,
we can multiply the above times by d and reduce all 2m terms
in space and time to 2m/d; in particular d must be chosen so
that the computer word holds O(m/d) bits.

Proof. The algorithm virtually visits the nodes of G′E in
reverse order. Let us first consider the query (x,E, o) for
o ∈ V . The algorithm starts simultaneously from all the nodes
(o, f) ∈ G′E , for any final NFA state f ∈ F (let us regard
F and D as sets of NFA states). The algorithm preserves the
invariant that, if it is at node v ∈ V with the active NFA states
D, then it is the first time it simulates the visit of the node
(v, d) ∈ G′E for any NFA state d ∈ D. Each transition to
new states (v′, d′) is done in three parts. In the first part, it

finds in O(log |P |) time every distinct label p ∈ P of edges
in G′E that lead to some state (v, d) for d ∈ D. This cost can
be charged to the edges of G′E that lead to some state (v, d),
because there is at least one edge per resulting label. In the
second part, for each label p found, it finds in O(log |V |) time
every distinct node v′ ∈ V such that we reach some current
node (v, d) from some unvisited node (v′, d′) in G′E via label
p (it obtains simultaneously the set D′ of all those states d′).
We can then charge the cost to the nodes (v′, d′) of G′E . The
third part takes O(1) time per node arrived at, which becomes
the current node in the next iteration.

The total cost is then O(|G′E | log |G|) for the traversal.
Glushkov’s construction takes O(m2) time to mark all the bits
in B[1 . . |P |] after the constant-time lazy initialization of B.
The construction of the bit-parallel tables takes time O(2m),
dominated by table T . Computing the cells B for the internal
wavelet tree nodes of Lp adds O(m log |P |) time, again using
lazy initialization, because only O(m) wavelet tree leaves have
nonzero cells in B. The lazy initialization of D for the wavelet
tree nodes of Ls adds O(1) time.

The working space is O(m2m) bits for the bit-parallel
simulation of the NFA, O(m(|P | + |V |)) bits for the tables
B/D on the wavelet tree nodes of Lp/Ls, O(|P | + |V |) bits
for the compact structures for the lazy initialization of the
tables B/D (see App. C, [58]), and O(mmaxρ) bits for the
recursive path traversals carrying the active states D.

If the computer word cannot hold O(m) bits, we split the
words into d words of O(m/d) bits each and operate on each
word sequentially, thereby multiplying times by O(d). This
reduces every term 2m in space and time to 2m/d, and can be
done whenever it is convenient.

All the other types of queries (x,E, y) are reduced to the
query (x,E, o) we have considered: in case (s, E, y), where
s ∈ V and y ∈ Φ, we just reverse the query; in case (x,E, y)
where x, y ∈ Φ, we perform many queries (s, E, y), which
subsume the cost of the initial query that finds the relevant
nodes s from any o. Here G′E is the union of the graphs G′E
for every s. The only case where we may visit more nodes
than those in G′E is the query (s, E, o) with both s, e ∈ V ,
because we visit nodes that may not lead to s. This is why
this case is left out of the theorem.

The theorem does not reflect that we can process several
NFA states d simultaneously when traversing the nodes (v, d)
of G′E , thanks to the bit-parallel simulation of the NFA. On
the other extreme, we can choose d = m (i.e., simulate
the automaton in nondeterministic form) so as to completely
remove the exponential dependence on m; we then obtain
a time complexity of O(m2 log |P | + m|G′E | log |G|). This
version still non-trivially manages to traverse just G′E . In
practice, if we have long RPQs, we can increase d, which
will decrease the exponential term in m from both time and
space, but will multiply (data-dependent) terms in the time by
d. If we have short RPQ expressions (and lots of data), we
can decrease d, which will have the inverse effect.

SA BA BaqUChLH

1

4

42

23

3

56

0
3

1
2

^b
u
s

l5

l5
l5

l5

Fig. 8. The product graph GE of the graph of Fig. 1 and the NFA of Fig. 6,
highlighting in black the subgraph G′E that is traversed (backwards) in Fig. 7.

Example. Fig. 8 shows the product graph GE of our running
example, with the nodes and edges of G′E in bold. The rows
now correspond to the NFA states, by definition. The dashed
edges also belong to G′E but we avoid them to prevent loops.
The shaded nodes correspond to reported results. Theorem 1
proves that we spend, at worst, logarithmic time per node
and edge of G′E . Comparing the figure with Fig. 7, however,
one can see that our simulation processes the nodes of the
second and third rows of GE simultaneously (in row 0110 of
Fig. 7). We maintain in Fig. 8 the numbering of the nodes
of Fig. 7, which helps see the nodes we visit simultaneously. �

V. IMPLEMENTATION AND EXPERIMENTS

We implemented our scheme in C++11 using the succinct
data structures library (SDSL, https://github.com/simongog/
sdsl-lite). We ran our experiments on an Intel(R) Xeon(R)
CPU E5-2630 at 2.30GHz, with 6 cores, 15 MB of cache,
and 96 GB of RAM. Our code was compiled using g++ with
flags -std=c++11, -O3, and -msse4.2. The source code and
data are available at https://github.com/darroyue/Ring-RPQ.

Benchmark.: We evaluate our approach on a real-
world benchmark based on a Wikidata graph [59] of n =
958,844,164 edges, |V | = 348,945,080 nodes, |S| =
106,736,662 subjects, |P | = 5,419 predicates, and |O| =
295,611,216 objects. This graph occupies 10.7 GB in plain
form (with 32-bit integers for each triple component, 12
bytes per tuple) and 7.9 GB in packed form (i.e., using
dlog |S|e+ dlog |P |e+ dlog |O|e bits, or 8.63 bytes per tuple).

We compare with the following graph database systems, in
terms of both space and time:1

Jena: A reference implementation of the SPARQL standard.
Virtuoso: A widely used graph database hosting the public

DBpedia endpoint, among others [60].
Blazegraph: The graph database system [61] hosting the

official Wikidata Query Service [8].
Datalog: A Datalog-based engine that we cannot identify due

to licensing terms.

1To the best of our knowledge, ArangoDB, Neo4j, OrientDB and Tiger-
Graph do not support RPQs declaratively with the standard semantics as we
define, though Neo4j and TigerGraph do provide RPQ-like features.

Systems are then configured per vendor recommendations,
as in previous work [36]. Jena, Virtuoso and Blazegraph
all implement RPQs per the semantics of property paths in
SPARQL 1.1, whereby fixed-length paths (without * or +)
are translated into SPARQL graph patterns without RPQs and
evaluated under bag semantics. All systems apply set seman-
tics for arbitrary-length paths, per the SPARQL standard. Jena
and Blazegraph implement a navigational BFS-style function
called ALP (Arbitrary Length Paths) defined by the SPARQL
standard [4], while Virtuoso uses a transitive closure operator
implemented over its relational database engine.

For the Datalog system, we store the graph using the
extensional predicate E(s, p, o) for edges, and an intensional
(materialized) predicate V (n) to capture nodes through the
two rules V (n) ← E(n, p, o), V (n) ← E(s, p, n). We use
the dictionary-encoded graph (terms are integers). We then
translate the RPQs to (positive) Datalog queries. We first
apply a base translation of the syntax tree of RPQs into
Datalog. Thereafter we tested a number of transformations
and optimizations over this base translation, as follows (the
transformations are chained, starting with the base translation):
(1) inlining of non-recursive intermediate predicates, such that
rules with that predicate in the head are removed from the
query, and rules with that predicate in the body have the
corresponding atoms replaced by the bodies of rules with the
predicate in the head; (2) linearizing the query by inlining
all but one of the recursive body predicates (where possible),
reducing the arity of intermediate predicates; (3) pushing
constants in the query (resulting from constant node(s) in the
RPQ) away from the goal predicate of the query towards the
base graph predicate(s); (4) pruning to remove duplicate rules,
duplicate atoms, and trivially satisfied atoms such as V (x) in a
body V (x), E(x, p, y). The direction of the linear recursion in
(2) was decided based on what would allow optimization (3)
to push the constants through to the base predicate, depending
on which node was constant. We performed experiments with
and without each optimization, where optimization (3) yielded
major performance gains, avoiding the computation of the
complete transitive closure, rather computing it from a specific
constant. Before querying, we built all four index permutations
for constant predicate, as well as an index on nodes.

In order to test on challenging, real-world RPQs, we ex-
tracted all non-trivial RPQs (i.e., not a simple label) from
the code-500 (timeout) sections of all seven intervals of the
Wikidata Query Logs [8]. After filtering RPQs mentioning
constants not used in the dataset, normalizing variable names,
and removing duplicates, this process yielded 1,952 unique
queries. From those, we selected the 1,589 that we could
confirm produced less than one million results (in some
system), for compatibility with Virtuoso, which has a hard-
coded limit of 220 results. All queries are run with a timeout of
60 seconds under set semantics (using DISTINCT in SPARQL).
We classify the RPQs of our log into patterns by mapping
nodes to constant/variable types and erasing their predicates;
for example, (x, p1/p∗2, y) has the pattern c / ∗ c, c / ∗ v,
v / ∗ c, or v / ∗ v, depending on whether x and y are

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
https://github.com/darroyue/Ring-RPQ

TABLE I
RPQ PATTERNS WITH MORE THAN 10 QUERIES IN OUR LOG.

1st–5th #

v/*c 450
v*c 421
v+c 107
c*v 98

c/*v 95

6th–10th #

v/c 48
v*/*c 30
v|*c 30

v*/*/*/*/*c 28
v/v 20

11th–13th #

v/?c 20
vˆv 14
v|v 11

constant (c) or variable (v). Table I shows the patterns with
more than 10 RPQs in our log.

Index construction: The Ring works with a dictionary-
encoded version of the graph as described in Section IV, where
we complete the graph by adding the reversed edges with
inverse labels: If an edge is labeled with predicate p, its reverse
edge has predicate ˆp = p+ |P |. This doubles the number of
edges and predicates. To construct our index, we build arrays
Ls and Lp (and the corresponding Cp and Co) using a suffix
array [36]. We represent Ls and Lp using wavelet matrices
[62], a particular implementation of wavelet trees to handle big
alphabets efficiently. We use plain bitvectors to implement the
wavelet-matrix nodes. Array Co is represented using a plain
bitvector, whereas Cp is represented as a simple array. Our
index is constructed in 2.3 hours, using 64.75 GB of RAM.
Prior dictionary encoding takes 5.2 additional hours.

Implementing queries: We use our generic query algo-
rithm of Section IV, but handle the query patterns vˆv, v/ˆv,
v|v, v||v, and v/v more efficiently using just backward search
and the extended functionality of wavelet trees: For a variable-
to-variable query (x, p, y) (analogously, (x, ˆp, y)), we start
by extracting all subjects s from Ls[Cp[p]..Cp[p + 1] − 1],
using the wavelet tree. Then, for each s in that range, we
start at range [Co[s]..Co[s] − 1] in Lp and carry out a
backward search step using ˆp. This yields the range of Ls

containing all values o such that (s, p, o) is a graph edge, so we
report (s, o). Query (x, p1|p2, y) (similarly, (x, p2|p3|p4, y)) is
decomposed into queries (x, p1, y) and (x, p2, y), which are
computed as explained before. To detect duplicate pairs (s, o),
we use a hash table (std::unordered set in C++). For
query (x, p1/p2, y) (similarly, (x, p1/ˆp2, y)) we first find all
nodes z that are the target of an edge labeled p1, and the origin
of an edge labeled p2. This is done by intersecting the ranges
Ls[Cp[ˆp1]..Cp[ˆp1 + 1]− 1] and Ls[Cp[p2]..Cp[p2 + 1]− 1],
using the wavelet tree capabilities [56]. Then, for every such
z in the intersection, we carry out a backward search for
p1z, to find all nodes s such that (s, p1, z) is a graph edge.
Similarly, we do a backward search for ˆp2z, to find all nodes
o such that (z, p2, o) is a graph edge. Then, for every such s
and o we report (s, o), again avoiding duplicates. Finally, for
queries (x, p1/(p2)∗, y) we start the search always from p1.
In general, this filters candidates more efficiently. For all the
remaining queries (x,E, y), we choose to start from the end
whose predicate has the smallest cardinality.

We implement array B (used to filter on Lp in Section

TABLE II
INDEX SPACE (IN BYTES PER EDGE), INDEXING TIME (IN HOURS), AND

SOME STATISTICS ON THE QUERY TIMES (IN SECONDS). ROW
“TIMEOUTS” COUNTS THE QUERIES TAKING OVER 60 SECONDS OR

REJECTED BY THE PLANNER FOR BEING TOO COSTLY. RPQS WITH SOME
CONSTANT NODE ARE INDICATED BY c, AND WITHOUT BY ¬c.

Ring Jena Virtuoso Blazegraph Datalog

Index space 16.41 95.83 60.07 90.79 78.32
Index time 7.5 37.4 3.0 39.4 6.0

Average 1.27 5.26 3.87 3.58 11.05
Median 0.07 0.20 0.14 0.13 2.71
Timeout 11 105 55 46 198

Average c 0.52 3.83 2.98 3.30 10.60
Median c 0.06 0.17 0.11 0.13 2.68
Timeout c 1 63 37 39 178

Average ¬c 14.02 29.59 18.95 8.35 18.84
Median ¬c 3.93 4.50 7.98 0.19 6.65
Timeout ¬c 10 42 18 7 20

IV-A) with an array of integers, initially zeroed. We do lazy
initialization by setting the values of the different predicates of
the query and their wavelet matrix ancestors, and zeroing them
again after running the query. Array D, on the other hand,
is implemented using a compact lazy initialization structure
(App. C, [58]), which uses O(|V |) extra bits on top of D. We
use 16-bit cells for D, as queries in our log have fewer than
16 predicates (with some few exceptions that use operator |,
which are handled differently as explained).

a) Space and query time: Table II compares the space
usage, the time taken for indexing, and the query times of the
systems tested. The Ring is the smallest index, using 16.41
bytes per triple. This is about twice the space of the compact
representation of the data, consistent with the fact that we
duplicate all the edges. Array D, needed at query time, uses
3.09 additional bytes per triple, whereas B uses 9.04× 10−5

bytes per triple. The total working space usage at query time
is 19.50 bytes per triple, 1/3–1/5 of the space used by the
other indexes (not considering their extra working space).

Virtuoso has the fastest indexing time, taking around 3
hours. For Datalog and Ring, which take 6.0 and 7.5 hours
respectively, we include dictionary encoding, which took the
bulk of time (5.2 hours). Jena (37.4 hours) and Blazegraph
(39.4 hours) took much longer to index.

The Ring offers the fastest query times on average, being
2.8 times faster than Blazegraph, the next best performer. The
Ring is also the system with fewest timeouts. On the queries
where some node is a constant (“c” in the table, 94.5% of the
log), the Ring is on average 5.7 times faster than Virtuoso, the
next best competitor for this query type. For the queries where
both nodes are variables (“¬c”, 5.5% of the log), Blazegraph
is 1.7 times faster, on average, than the Ring (in second place).
Regarding medians, the Ring is about twice as fast as the next
best performer overall, while Blazegraph greatly outperforms
other systems in the median case for RPQs with two variables.
Datalog is outperformed by the other query engines, which

0

1

2

3
T
im

e
(s
ec
s)

v * c v + c v */*/*/*/* c v /? c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v |* c v /+ c v /* c v /^ v

0

0.05

0.1

0.15

T
im

e
(s
ec
s)

c * v c /* v v / c v */* c

Ring Jena Virtuoso Blazegraph Datalog

Fig. 9. Boxplots for the distribution of query times. Note that in the case of
c ∗ v and c/ ∗ v, the results for Ring hug the x-axis close to zero

offer native support and planning for RPQs.
Fig. 9 shows the distribution of query times for the different

patterns. Note that Datalog returns few queries (specifically 7)
in under a second, and thus does not appear for the scale used
in the bottom row of plots. Also, in the case of c ∗ v and
c/ ∗ v, the results for Ring are so close to the x-axis that they
may be difficult to see. We can observe that the Ring tends
to outperform other systems in most patterns involving Kleene
star (∗) or Kleene plus (+). However, other systems sometimes
outperform the Ring for RPQs matching paths of fixed length
1 or 2. Fixed-length paths can be solved as join queries, with
more efficient algorithms that, for example, can start in the
“middle” of the path, and work outwards (if deemed to be
more efficient based, e.g., on cardinality estimates).

Our system and Datalog work on integer-encoded triples,
whereas others work on the original strings. As shown in pre-
vious work [36], we can encode the strings of this benchmark
within just 3 additional bytes per triple, incurring around 3
extra milliseconds per query, in order to decode the answers.
These numbers do not alter our general conclusions.

VI. CONCLUSIONS

We have shown how the ring [36], a compact representation
of labeled graphs, can be used to efficiently evaluate RPQs
by combining, in a unique way, the capabilities of (1) the
wavelet trees, to process ranges of graph nodes or labels, and
(2) the bit-parallel simulation of Glushkov automata, to handle
various NFA states simultaneously, in order to solve regular
path queries (RPQs) on the graph. We prove that the cost
of the resulting algorithm is proportional to the subgraph of

the product graph induced by the query, but our technique
is even faster because it is able to process groups of nodes
and labels simultaneously. As a result, our index uses 3–
5 times less space than the alternatives, while matching or
exceeding their performance (on average, our index is the
fastest, outperforming the next best by a factor of 2.8).

We have not yet explored strategies for partitioning the
NFA at edges with labels that appear infrequently in the
graph and then joining the results, as do several techniques
described in Section II. Our techniques do permit running
the NFA forwards or backwards from those labels, so this
could be explored in future. Furthermore, the wavelet tree
offers powerful operations that provide on-the-fly selectivity
statistics, which can be used for even more sophisticated query
planning. For example, by roughly doubling the space, we can
compute in logarithmic time the amount of distinct predicates
labeling edges towards a given range of objects, or distinct
subjects that are sources of a given range of predicates [63].

Our technique is particularly well-suited to integrate RPQs
in SPARQL multijoin queries solved with Leapfrog Triejoin,
reusing the same ring data structure [36]. In this case, in
addition to the triples of the basic graph patterns, there will be
triples of the form (x,E, y), where E is a regular expression.
By treating E as any other relation, the Leapfrog algorithm
will choose to first instantiate x (resp., y), and thus will ask
for the smallest x ≥ x0 (resp., y ≥ y0) that has a solution for
some y (resp., x). Later, it will instantiate y (resp., x) and will
ask for the smallest y ≥ y0 (resp, x ≥ x0) that has a solution
for a concrete value of x (resp., y). The capability of wavelet
trees to work on ranges of symbols allows us to find those
smallest x ≥ x0 or y ≥ y0 values efficiently, for example by
successive binary partitioning of the range of candidates.

Other requirements are also efficiently met with our data
structures. For example, we can easily enforce visiting specific
nodes within the regular expression, or that those nodes have
specific attribute values, by marking the non-complying nodes
as already visited with the NFA states that enforce those
conditions, so they will be avoided in our traversal. The bit-
parallel Glushkov simulation also efficiently handles classes of
symbols labeling the NFA edges (like (l1|l2|l5), or negated
labels), without building unnecessarily large NFAs; this could
be used to support negated property sets defined in SPARQL
property paths, or even inference over RDF graphs (e.g.,
handling virtual disjunctions of inferred properties).

Finally, our ability to work on ranges of nodes of the product
graph can be strengthened so as to maintain those ranges
along our step 3. This could reduce processing times and
allow for reporting ranges of results, instead of necessarily
enumerating them one by one. This ability also enables a
compact representation of the set of answers from which any
concrete answer can be efficiently extracted. This avenue has
been seldom explored in previous work, and might even break
classical lower bounds based on the output size of the queries.

REFERENCES

[1] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L.
Reutter, and D. Vrgoc, “Foundations of Modern Query
Languages for Graph Databases,” ACM Comput. Surv.,
vol. 50, no. 5, pp. 68:1–68:40, 2017. [Online]. Available:
https://doi.org/10.1145/3104031

[2] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “A
Graphical Query Language Supporting Recursion,” in
SIGMOD International Conference on Management of
Data. ACM Press, 1987, pp. 323–330.

[3] A. O. Mendelzon and P. T. Wood, “Finding regular
simple paths in graph databases,” SIAM Journal on
Computing, vol. 24, no. 6, pp. 1235–1258, 1995.

[4] S. Harris, A. Seaborne, and E. Prud’hommeaux,
“SPARQL 1.1 Query Language,” W3C Recommenda-
tion, Mar. 2013, http://www.w3.org/TR/sparql11-query/.

[5] E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vr-
goc, “SPARQL with Property Paths,” in International
Semantic Web Conference (ISWC), ser. LNCS, vol. 9366.
Springer, 2015, pp. 3–18.

[6] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi,
“PGQL: a property graph query language,” in Interna-
tional Workshop on Graph Data Management: Experi-
ences and Systems (GRADES). ACM, 2016, p. 7.

[7] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee, “Aggregation
Support for Modern Graph Analytics in TigerGraph,” in
SIGMOD International Conference on Management of
Data. ACM, 2020, pp. 377–392.

[8] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and
A. Bielefeldt, “Getting the Most Out of Wikidata: Seman-
tic Technology Usage in Wikipedia’s Knowledge Graph,”
in International Semantic Web Conference (ISWC), 2018,
pp. 376–394.

[9] A. Bonifati, W. Martens, and T. Timm, “Navigating the
Maze of Wikidata Query Logs,” in The World Wide Web
Conference (WWW). ACM, 2019, pp. 127–138.

[10] Z. Miao, D. C. Stefanescu, and A. Thomo, “Grid-
Aware Evaluation of Regular Path Queries on Spatial
Networks,” in International Conference on Advanced
Information Networking and Applications (AINA). IEEE
Computer Society, 2007, pp. 158–165.

[11] A. Gubichev and T. Neumann, “Path Query Processing
on Very Large RDF Graphs,” in International Workshop
on the Web and Databases (WebDB), 2011.

[12] A. Koschmieder and U. Leser, “Regular Path Queries on
Large Graphs,” in International Conference on Scientific
and Statistical Database Management (SSDBM), ser.
LNCS, vol. 7338. Springer, 2012, pp. 177–194.

[13] S. C. Dey, V. Cuevas-Vicenttı́n, S. Köhler, E. Gribkoff,
M. Wang, and B. Ludäscher, “On implementing
provenance-aware regular path queries with relational
query engines,” in Joint 2013 EDBT/ICDT Conferences.
ACM, 2013, pp. 214–223.

[14] A. Gubichev, S. J. Bedathur, and S. Seufert, “Sparqling
kleene: fast property paths in RDF-3X,” in International

Workshop on Graph Data Management Experiences and
Systems (GRADES). CWI/ACM, 2013, p. 14.

[15] N. Yakovets, P. Godfrey, and J. Gryz, “Evaluation of
SPARQL Property Paths via Recursive SQL,” in Alberto
Mendelzon International Workshop on Foundations of
Data Management (AMW), ser. CEUR Workshop Pro-
ceedings, vol. 1087. CEUR-WS.org, 2013.

[16] X. Wang, G. Rao, L. Jiang, X. Lyu, Y. Yang, and
Z. Feng, “TraPath: Fast Regular Path Query Evaluation
on Large-Scale RDF Graphs,” in Web-Age Information
Management (WAIM), ser. LNCS, vol. 8485. Springer,
2014, pp. 372–383.

[17] G. H. L. Fletcher, J. Peters, and A. Poulovassilis, “Effi-
cient regular path query evaluation using path indexes,” in
International Conference on Extending Database Tech-
nology (EDBT). OpenProceedings.org, 2016, pp. 636–
639.

[18] M. Nolé and C. Sartiani, “Regular Path Queries on
Massive Graphs,” in SIGMOD International Conference
on Scientific and Statistical Database Management (SS-
DBM). ACM, 2016, pp. 13:1–13:12.

[19] X. Wang, J. Wang, and X. Zhang, “Efficient Distributed
Regular Path Queries on RDF Graphs Using Partial
Evaluation,” in International Conference on Information
and Knowledge Management (CIKM). ACM, 2016, pp.
1933–1936.

[20] N. Yakovets, P. Godfrey, and J. Gryz, “Query Planning
for Evaluating SPARQL Property Paths,” in SIGMOD In-
ternational Conference on Management of Data. ACM,
2016, pp. 1875–1889.

[21] Z. Abul-Basher, “Multiple-Query Optimization of Regu-
lar Path Queries,” in International Conference on Data
Engineering (ICDE). IEEE Computer Society, 2017, pp.
1426–1430.

[22] J. A. Baier, D. Daroch, J. L. Reutter, and D. Vrgoc,
“Evaluating Navigational RDF Queries over the Web,” in
ACM Conference on Hypertext and Social Media (HT).
ACM, 2017, pp. 165–174.

[23] O. Hartig and G. Pirrò, “SPARQL with property
paths on the Web,” Semantic Web, vol. 8, no. 6, pp.
773–795, 2017. [Online]. Available: https://doi.org/10.
3233/SW-160237

[24] V. Nguyen and K. Kim, “Efficient Regular Path Query
Evaluation by Splitting with Unit-Subquery Cost Ma-
trix,” IEICE Trans. Inf. Syst., vol. 100-D, no. 10, pp.
2648–2652, 2017.

[25] D. Colazzo, V. Mecca, M. Nolé, and C. Sartiani, “Path-
Graph: querying and exploring big data graphs,” in
International Conference on Scientific and Statistical
Database Management (SSDBM). ACM, 2018, pp.
29:1–29:4.

[26] V. Fionda, G. Pirrò, and M. P. Consens, “Querying
knowledge graphs with extended property paths,” Seman-
tic Web, vol. 10, no. 6, pp. 1127–1168, 2019.

[27] Q. Mehmood, M. Saleem, R. Sahay, A. N. Ngomo, and
M. d’Aquin, “QPPDs: Querying Property Paths Over

https://doi.org/10.1145/3104031
http://www.w3.org/TR/sparql11-query/
https://doi.org/10.3233/SW-160237
https://doi.org/10.3233/SW-160237

Distributed RDF Datasets,” IEEE Access, vol. 7, pp.
101 031–101 045, 2019.

[28] K. Miura, T. Amagasa, and H. Kitagawa, “Accelerating
Regular Path Queries using FPGA,” in International
Workshop on Accelerating Analytics and Data Man-
agement Systems Using Modern Processor and Stor-
age Architectures (ADMS@VLDB), R. Bordawekar and
T. Lahiri, Eds., 2019, pp. 47–54.

[29] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, and S. Be-
dathur, “Efficiently Answering Regular Simple Path
Queries on Large Labeled Networks,” in SIGMOD In-
ternational Conference on Management of Data. ACM,
2019, pp. 1463–1480.

[30] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaı̈da,
“On the Optimization of Recursive Relational Queries:
Application to Graph Queries,” in SIGMOD International
Conference on Management of Data (SIGMOD). ACM,
2020, pp. 681–697.

[31] A. Pacaci, A. Bonifati, and M. T. Özsu, “Regular Path
Query Evaluation on Streaming Graphs,” in SIGMOD In-
ternational Conference on Management of Data. ACM,
2020, pp. 1415–1430.

[32] F. Tetzel, W. Lehner, and R. Kasperovics, “Efficient
Compilation of Regular Path Queries,” Datenbank-
Spektrum, vol. 20, no. 3, pp. 243–259, 2020.

[33] X. Guo, H. Gao, and Z. Zou, “Distributed processing of
regular path queries in RDF graphs,” Knowl. Inf. Syst.,
vol. 63, no. 4, pp. 993–1027, 2021.

[34] J. Kuijpers, G. Fletcher, T. Lindaaker, and N. Yakovets,
“Path Indexing in the Cypher Query Pipeline,” in Inter-
national Conference on Extending Database Technology
(EDBT). OpenProceedings.org, 2021, pp. 582–587.

[35] B. Liu, X. Wang, P. Liu, S. Li, and X. Wang, “PAIRPQ:
An Efficient Path Index for Regular Path Queries on
Knowledge Graphs,” in International Joint Conference
on Web and Big Data (APWeb-WAIM), ser. LNCS, vol.
12859. Springer, 2021, pp. 106–120.

[36] D. Arroyuelo, A. Hogan, G. Navarro, J. Reutter, J. Rojas-
Ledesma, and A. Soto, “Worst-case optimal graph joins
in almost no space,” in ACM International Conference
on Management of Data (SIGMOD), 2021, pp. 102–114.

[37] M. Burrows and D. Wheeler, “A block sorting lossless
data compression algorithm,” Digital Equipment Corpo-
ration, Tech. Rep. 124, 1994.

[38] R. Grossi, A. Gupta, and J. S. Vitter, “High-order
entropy-compressed text indexes,” in Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2003, pp. 841–850.

[39] V.-M. Glushkov, “The abstract theory of automata,” Rus-
sian Mathematical Surveys, vol. 16, pp. 1–53, 1961.

[40] G. Navarro and M. Raffinot, “New techniques for regular
expression searching,” Algorithmica, vol. 41, no. 2, pp.
89–116, 2005.

[41] S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum,
“FERRARI: Flexible and efficient reachability range
assignment for graph indexing,” in International Con-

ference on Data Engineering (ICDE). IEEE Computer
Society, 2013, pp. 1009–1020.

[42] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang, “Com-
puting label-constraint reachability in graph databases,”
in SIGMOD International Conference on Management of
Data. ACM, 2010, pp. 123–134.

[43] L. D. J. Valstar, G. H. L. Fletcher, and Y. Yoshida,
“Landmark Indexing for Evaluation of Label-Constrained
Reachability Queries,” in SIGMOD International Confer-
ence on Management of Data. ACM, 2017, pp. 345–358.

[44] A. Bonifati, W. Martens, and T. Timm, “An analytical
study of large SPARQL query logs,” VLDB J., vol. 29,
no. 2-3, pp. 655–679, 2020.

[45] L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao,
“Efficient processing of label-constraint reachability
queries in large graphs,” Inf. Syst., vol. 40, pp. 47–66,
2014. [Online]. Available: https://doi.org/10.1016/j.is.
2013.10.003

[46] Y. Peng, Y. Zhang, X. Lin, L. Qin, and W. Zhang,
“Answering Billion-Scale Label-Constrained Reachabil-
ity Queries within Microsecond,” PVLDB, vol. 13, no. 6,
pp. 812–825, 2020.

[47] Y. Peng, X. Lin, Y. Zhang, W. Zhang, and L. Qin,
“Answering reachability and K-reach queries on large
graphs with label constraints,” VLDB J., vol. 31, no. 1,
pp. 101–127, 2022.

[48] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, “Dis-
tance oracles in edge-labeled graphs,” in International
Conference on Extending Database Technology (EDBT).
OpenProceedings.org, 2014, pp. 547–558.

[49] G. Berry and R. Sethi, “From regular expression to
deterministic automata,” Theoretical Computer Science,
vol. 48, no. 1, pp. 117–126, 1986.

[50] A. Brüggemann-Klein, “Regular expressions into fi-
nite automata,” Theoretical Computer Science, vol. 120,
no. 2, pp. 197–213, 1993.

[51] T. L. Veldhuizen, “Triejoin: A simple, worst-case optimal
join algorithm,” in Proc. International Conference on
Database Theory (ICDT), 2014, pp. 96–106.

[52] P. Ferragina and G. Manzini, “Indexing compressed
texts,” Journal of the ACM, vol. 52, no. 4, pp. 552–581,
2005.

[53] A. Atserias, M. Grohe, and D. Marx, “Size bounds
and query plans for relational joins,” SIAM Journal on
Computing, vol. 42, no. 4, pp. 1737–1767, 2013.

[54] D. R. Clark, “Compact PAT trees,” Ph.D. dissertation,
University of Waterloo, Canada, 1996.

[55] J. I. Munro, “Tables,” in Proc. 16th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 1996, pp. 37–42.

[56] T. Gagie, G. Navarro, and S. J. Puglisi, “New algo-
rithms on wavelet trees and applications to information
retrieval,” Theoretical Computer Science, vol. 426-427,
pp. 25–41, 2012.

[57] G. Navarro, “Wavelet trees for all,” Journal of Discrete
Algorithms, vol. 25, pp. 2–20, 2014.

https://doi.org/10.1016/j.is.2013.10.003
https://doi.org/10.1016/j.is.2013.10.003

[58] G. Navarro, “Spaces, Trees, and Colors: The algorithmic
landscape of document retrieval on sequences,” ACM
Comput. Surv., vol. 46, no. 4, pp. 52:1–52:47, 2013.
[Online]. Available: https://doi.org/10.1145/2535933

[59] D. Vrandecic and M. Krötzsch, “Wikidata: A free col-
laborative knowledgebase,” Communications of the ACM,
vol. 57, no. 10, pp. 78–85, 2014.

[60] O. Erling and I. Mikhailov, “RDF support in the Virtuoso
DBMS,” in Networked Knowledge – Networked Media.
Springer, 2009, pp. 7–24.

[61] B. B. Thompson, M. Personick, and M. Cutcher, “The
Bigdata®RDF Graph Database,” in Linked Data Man-
agement. Chapman and Hall/CRC, 2014, pp. 193–237.

[62] F. Claude, G. Navarro, and A. Ordóñez, “The wavelet
matrix: An efficient wavelet tree for large alphabets,”
Information Systems, vol. 47, pp. 15–32, 2015.

[63] T. Gagie, J. Kärkkäinen, G. Navarro, and S. J. Puglisi,
“Colored range queries and document retrieval,” Theo-
retical Computer Science, vol. 483, pp. 36–50, 2013.

https://doi.org/10.1145/2535933

	Introduction
	Related Work
	Key Concepts
	Regular Path Queries
	Product Graph
	Bit-parallel Glushkov Automata
	The Ring
	Wavelet trees

	Our Approach
	Part one: Finding predicates from objects
	Part two: Finding subjects from predicates
	Part three: Mapping subjects back to objects
	Other kinds of RPQs
	Time complexity

	Implementation and Experiments
	Conclusions

