
Multilayer graphs: A unified data model for graph databases
Renzo Angles

DCC, Universidad de Talca & IMFD

Chile

rangles@utalca.cl

Aidan Hogan

DCC, University of Chile & IMFD

Chile

ahogan@dcc.uchile.cl

Ora Lassila

Amazon Web Services

USA

ora@amazon.com

Carlos Rojas

IMFD

Chile

cirojas6@uc.cl

Daniel Schwabe

Visiting Researcher USC Information

Sciences Institute

USA

dschwabe@gmail.com

Pedro Szekely

USC Information Sciences Institute

USA

dvrgoc@ing.puc.cl

Domagoj Vrgoč

PUC Chile & IMFD

Chile

dvrgoc@ing.puc.cl

ABSTRACT
In this short position paper, we argue that there is a need for a unify-

ing data model that can support popular graph formats such as RDF,

RDF* and property graphs, while at the same time being powerful

enough to naturally store information from complex knowledge

graphs, such asWikidata, without the need for a complex reification

scheme. Our proposal, called themultilayer graph model, presents a
simple and flexible data model for graphs that can naturally support

all of the above, and more. We also observe that the idea of multi-

layer graphs has appeared in existing graph systems from different

vendors and research groups, illustrating its versatility.

1 INTRODUCTION
Recent years have seen renewed interest in using graphs for model-

ing, managing, querying and analyzing data, particularly in scenar-

ios involving diverse data, incomplete knowledge, multitudinous

sources, and so forth. This interest stems from the growing real-

ization in various communities – such as Databases [6], Semantic

Web [15], Machine Learning [9], and more recently Knowledge

Graphs [16] – that graphs provide a flexible, lightweight and intu-

itive abstraction well-suited to many complex, diverse domains [1].

Within these different communities, various abstract and con-

crete graph-based data models have been proposed.
1
Perhaps the

simplest such model is that of a directed labeled graph, which is

simply a set of triples, where each triple forms a directed labeled

1
By an abstract data model, herein we refer to a structure used to represent data (e.g.,

the relational model). A concrete data model further adds details important in practice,

such as the types of terms allowed, syntaxes, etc. (e.g., SQL’s data model).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9384-3/22/06. . . $15.00

https://doi.org/10.1145/3534540.3534696

edge. This forms the basis of concrete data models, such as the

Resource Description Framework (RDF) [7]. Such an abstraction is

also used by the Machine Learning community for topics such as

knowledge graph embeddings [25] and in the Networks community

for topics such as community detection [17]. It is also popular in

the Database community, particularly in the theoretical literature,

where such graphs are often simply called graph databases [27].
However, in practice, directed labeled graphs are sometimes

considered too simple. What if, for example, we want to add data

that describe edges themselves, or graphs themselves? While more

complex data can be modeled in directed labeled graphs using

various forms of reification [14], the result can often be verbose and

unintuitive [1]. Hence a wide range of graph-based models have

emerged [3]: the (labeled) property graph model [1, 26] has gained

significant popularity in the Database community, while models

such as named graphs [10] and RDF-star (RDF*) [12] have been

proposed within the Semantic Web community.

With several abstract and concrete graph models now available,

the question becomes how to make these models interoperable. How
can we integrate data from both RDF and property graphs? How

can we design a graph database engine that can seamlessly ingest,

integrate and query data from any such model? One possibility is

to take the simplest model – directed labeled graphs – as our base

and use reification [14] to represent more complex models, but as

mentioned before, reification is too verbose. Another possibility

is to take a more complex model – say property graphs – as our

base [4, 11], but this would add complexity to higher levels when

we think of graph queries, analytics, learning, etc.

Here we discuss an intermediate solution. Specifically we define

multilayer graphs: an abstract graph model that extends directed

labeled graphs with edge ids. This model largely removes the need

for reification when modeling complex data, and yet adds minimal

complexity versus directed labeled graphs. Adding edge ids to di-

rected labeled graphs has already been proposed independently

in the context of systems developed by the authors of the present

paper [18, 19, 24]. Our contribution here is to formally define and

motivate this abstract model, comparing it to other graph models.

https://doi.org/10.1145/3534540.3534696

We remark that there have been other proposals for formalizing

graphs, such as multi-attributed relational structures (MARS) [20],

which have been used to model knowledge graphs such as Wiki-

data [22]. These languages, while promising, go beyond a mere data

model, capturing logic formulae over graphs. What we propose

here is much simpler: a concise data model for graphs.

We will first introduce existing graph models, and their strengths

and weaknesses. We then formally define the multilayer graph

model, and show how other graphmodels can be represented within

it. We further discuss practical benefits of the model, and how it is

currently being used. We conclude with some future directions.

2 EXISTING GRAPH DATA MODELS
One of the simplest graphmodels is based on directed labeled graphs,
which consist of a set of edges of the form a cb , where a is

called the source node, b the edge label, and c the target node. Such
graphs are a staple in the theoretical literature on graph databases

[5], and they form the basis of the RDF data model [7], where the

source node, edge label and target node are called subject, predicate
and object, respectively. In the context of knowledge graphs, nodes

are used to represent entities and edges represent binary relations.

As an example, the edge Michelle Bachelet President of Chileposition held ,

tells us that Michelle Bachelet was (or is) the president of Chile.

However, directed labeled graphs are sometimes too simple. They

elegantly represent binary relations, but higher arity relations can

be problematic. Take, for example, the two Wikidata knowledge

graph [23] statements from Figure 1. Both statements claim that

Michelle Bachelet was a president of Chile, and both are associated

with qualifiers that provide extra information: in this case a start

date, an end date, who replaced her, and whom she was replaced

by. There are two statements, indicating two distinct periods when

she held the position. Also the ids for objects (for example, Q320
and P39) are shown; any positional element can have an id and be

viewed as a node in the knowledge graph (for instance start date,
identified by P580, can be a source node of another statement).

Representing statements like this in a directed labeled graph

requires some form of reification to decompose n-ary relations into

binary relations [14]. Figure 2 shows a graph where e1 and e2 are
nodes representing n-ary relationships. The reification is given by

the use of the edges labeled as source, label and target. For sim-

plicity, we use human-readable nodes and labels, where in practice,

a node Sebastián Piñera will rather be given as the identifier Q306 , and

an edge label replaces will rather be given as P155. While using

reification is a valid solution, its main drawbacks are that: (i) it

can easily become cumbersome and inefficient for querying; and

(ii) it introduces semantics into graph data (requiring that an edge

labeled replaces has a particular meaning for instance).

To circumvent this issue, a number of graph models have been

proposed to capture higher-arity relations more concisely, includ-

ing property graphs [8] and RDF* [12, 13]. However, both have

limitations that render them incapable of modeling the statements

shown in Figure 1 without resorting to reification [14].

On the one hand, property graphs allow labels and property–

value pairs to be associated with both nodes and edges, where the

statements of Figure 1 can be represented as the property graph in

Figure 3. Though more concise than reification, labels, properties

Michelle Bachelet [Q320]

position held [P39] President of Chile [Q466956]
start date [P580] 2014-03-11
end date [P582] 2018-03-11
replaces [P155] Sebastián Piñera [Q306]
replaced by [P156] Sebastián Piñera [Q306]

position held [P39] President of Chile [Q466956]
start date [P580] 2006-03-11
end date [P582] 2010-03-11
replaces [P155] Ricardo Lagos [Q331]
replaced by [P156] Sebastián Piñera [Q306]

Figure 1: Wikidata statement group for Michelle Bachelet

e1 position heldlabel

Michelle Bachelet

source

President of Chile

target

Sebastian Piñera

replaced by

replaces

e2label

source

target

replaced by

2014-03-11

start date

2018-03-11

end date

2006-03-11

start date

2010-03-11

end date

Ricardo Lagos

replaces

Figure 2: Directed labeled graph reifying Figure 1

name = "Michelle Bachelet" (string)

n1 : human

name = "President of Chile" (string)

n2 : public office

e1 : position held

start date = "2014-03-11" (date)
end date = "2018-03-11" (date)
replaces = "Sebastián Piñera" (string)

replaced by = "Sebastián Piñera" (string)

e2 : position held

start date = "2006-03-11" (date)
end date = "2010-03-11" (date)
replaces = "Ricardo Lagos" (string)

replaced by = "Sebastián Piñera" (string)

Figure 3: Property graph for Figure 1, with extra node labels

Michelle Bachelet President of Chileposition held

Sebastián Piñera

replacesreplaced by

2018-03-11

start date

2014-03-11

end date

Figure 4: RDF* graph for the first statement of Figure 1

and values are strings, not nodes; for example, "Ricardo Lagos" is
not a node, but a string, which complicates, for example, querying

for the parties of presidents that Bachelet replaced.

On the other hand, RDF* supports quoted triples, which represent
an edge as a node [13]. For example, the first statement of Figure 1

can be represented in RDF* as shown in Figure 4. However, we can

only represent one of the statements in this way, as we can only

have one distinct node per edge; if we add the qualifiers for both

statements, we will not know which start date pairs with which

end date, for example. A proposed workaround involves adding

intermediate nodes to denote different occurrences of quoted triples,
requiring a reserved term, amongst other complications [13].

2

3 MULTILAYER GRAPHS
Per the previous section, a key feature needed to model complex

statements – such as multiple presidencies of a particular person

– is the ability to refer to the entire statement repeatedly. More

precisely, we need to be able to reference an edge as it if were a

node (or possibly multiple nodes). A multilayer graph captures this

feature through edge ids [14, 18, 19].

3.1 Defining multilayer graphs
We will now define multilayer graphs in two equivalent ways: as a

function, and as a relation.

Functional definition. Assume a universe Obj of objects (strings,
numbers, IRIs, etc.). We define multilayer graphs as follows:

Definition 3.1. A multilayer graph G = (O,γ) consists of a finite
set of objects O ⊆ Obj and a partial mapping γ : O → O ×O ×O .

Intuitively, O is the set of objects that appear in our graph data-

base, and γ models directed, labeled and identified edges between

objects. If γ (e) = (n1, l ,n2), this states that the edge (n1, l ,n2) has
id e , label l , and links the source node n1 to the target node n2.

We stated that multilayer graphs allow us to capture higher-

arity relations more directly. So how do we represent the Wikidata

statements from Figure 1? One possible representation is given in

Figure 5; here we only show edge ids as needed (all edges have ids).

Relational definition. We can also define a multilayer graph as a

single relation:MGraph(source,label,target,eid), where eid (edge id)
is a primary key of the relation. An edge γ (e) = (n1, l ,n2) becomes

a tuple MGraph(n1, l ,n2, e). This definition shows how the model

can be supported using relational database systems and techniques,

as was done for example in KGTK [18], or MillenniumDB [24].

We remark that multilayer graphs are closely related to the graph

theoretic notion of labeled quivers.

3.2 The layering
The layers in multilayer graphs result from the nested use of edge

ids. Given a multilayer graph G = (O,γ), the layer for an object

o ∈ O , denoted as layer(o), is defined as follows. If o is not an edge

id (not in the domain of γ), then layer(o) = 0. Otherwise, if γ (o) =
(n1, l ,n2); then layer(o) = max{layer(n1), layer(l), layer(n2)} + 1.

We call a multilayer graph G an n-layer graph where n is the maxi-

mum layer of an edge id inG . Figure 6 is a 2-layer graph, as depicted
in Figure 5, where each layer forms a directed labeled graph, where

the first layer does not use edge ids as nodes, and where each edge

in all subsequent layers uses an edge id from the previous layer as

a node. A hypothetical third layer might, for example, add external

references to support the specific dates claimed on layer 2.

In some cases, layers may not be clearly defined. Let D = (V ,E)
denote the dependence graph of a multilayer graph G = (O,γ),
where V is the codomain of γ , E ⊆ V ×V , and (e1, e2) ∈ V if and

only if γ (e1) returns a triple containing e2. We say that the layers

of G are well-defined if and only if D is acyclic. For example, if

γ (e) = (e, l ,n), then the layers are not well-defined as the layer of e
depends recursively on itself, and thus modifies itself. We say that

such edge ids are on layer∞, giving rise to a ∞-layer graph.

Michelle Bachelet President of Chile

e1 : position held

e2 : position held

2014-03-11

start date

Sebastián Piñera

replaces

replaced by

replaced by

2018-03-11

end date

2006-03-11

start date

Ricardo Lagos

replaces

2010-03-11

end date

Figure 5: Multilayer graph for Figure 1

Layer 1

Michelle Bachelet President of Chile

e1 : position held

e2 : position held

Layer 2

e1 Sebastián Piñera
replaces

replaced by
e2replaced by

2014-03-11

start date

2018-03-11

end date

2006-03-11

start date

Ricardo Lagos

replaces

2010-03-11

end date

Figure 6: Two layers of Figure 5

The notion of layering lies inherent in other graph models. In

Wikidata, qualifiers can be seen as forming a layer 2 graph (per

Figure 6). The properties (attribute–value pairs) in property graphs

are akin to layer 2 metadata, though strictly speaking the values do

not form nodes. In RDF*, quoted triples can be nested arbitrarily,

allowing for arbitrary layers; again, however, RDF* does not directly

support quoting the same triple multiple times.

3.3 Concrete models using multilayer graphs
A number of concrete data models proposed in different settings

already adhere to the multilayer graph model. Hernández et al.

[14] propose using singleton named graphs – effectively multilayer

graphs in an RDF setting – in order to represent Wikidata qualifiers,

placing one triple in each named graph, such that the name acts as

an id for the triple. The Knowledge Graph Toolkit (KGTK) [18] for

applying analytics over knowledge graphs has likewise used a con-

crete format conforming to multilayer graphs in order to abstract

different forms of graph into an intuitive tabular format that allows

for the application and composition of different analytical tasks.

The Amazon Neptune graph database further proposes the one
graph (1G) data model – a concrete version of multilayer graphs–

as an underlying model that support RDF, RDF*, property graphs,

etc., with often similar rationale to that provided here [19]. Mil-

lenniumDB [24] also uses the multilayer graph model – and an

extension to support external annotation – as the basis of its open

source graph database. These four initiatives have aimed to support

diverse graph data models, and all have converged towards the idea

of building a unified graph model by using edges as nodes, which

we have herein generalized as the multilayer graph model.

3

4 MULTILAYER VS. OTHER GRAPHS
In Appendix A, we discuss how legacy graph data models can be

mapped to the multilayer graph model. Here we compare the mod-

els. Table 1 summarizes the features that are directly supported

by the respective graph models without requiring reserved terms,
which would include, for example, source, label and target in Fig-

ure 2. Reserved terms may add indirection [14], require special

semantics, or increase tuple counts. The features are as follows:

• Edge label: assign a label to an edge.

• Node label: assign labels to nodes.

• Edge annotation: assign attribute–value pairs to an edge.

• Node annotation: assign attribute–value pairs to a node.

• External annotation: nodes/edges can be annotated without

adding new nodes or edges.

• Edge as node: an edge can be referenced as a node (this allows
edges to be connected to nodes of the graph).

• Edge as nodes: an edge can be referenced as multiple nodes.
2

• Arbitrary layers: an edge involving an edge node can itself

be referenced as a node, and so on, recursively.

• Graph as node: a graph can be referenced as a node.

• Quotation: edges referenced as nodes can be distinguished

as being either quoted (not asserted) or asserted.

We use MG, to denote the concrete data models described in

Section 3.3 that instantiate multilayer graphs. Some blanks in Ta-

ble 1 are more benign than others; for example, Node label requires
a reserved term (e.g., rdf:type), but no extra tuples; on the other

hand, Edge as node requires reification, using at least one extra

tuple, and at least one reserved term. All features except External
annotation can be supported in all models with reserved vocabulary.

Furthermore all features can be supported with a single reserved

term, except for Graph as node and Quotation.
The Edge as nodes feature is important for many use-cases, such

as for modeling the Wikidata example shown in Figure 1 (note:

values such as Ricardo Lagos are themselves nodes, which is why

property graphs are not considered as supporting this feature). Only

named graphs and multilayer graphs can model such examples

without reserved terms. Comparing named graphs and multilayer

graphs, the latter sacrifices the “Graph as node” ability, which, as
aforementioned, requires a reserved graph term to model in a mul-

tilayer graph. However, conceptually speaking, multilayer graphs

and named graphs aim to serve different purposes. We view a mul-

tilayer graph as modeling one graph, whereas named graphs are

intended to represent multiple graphs. In order to manage multi-

ple graphs, one could also potentially consider a multilayer named
graph model, which allows for multiple multilayer graphs to be

named with an additional (fifth) element.

Comparing property graphs with multilayer graphs, we see that

property graphs directly support certain features, such as node la-

bels and external annotation. Node labels are trivial to support via

a reserved label term, but external annotation is not supported. To

highlight the issue, compare the property graph of Figure 3 and the

multilayer graph of Figure 5: in the property graph, there is no node

for Sebastian Piñera, but rather a string; in the multilayer graph,

there is a node for Sebastian Piñera that is connected via an edge id.

2
For example, Michelle Bachelet President of Chileposition held can be referenced

by multiple nodes involved in different edges representing two presidencies.

Table 1: Features supported without reserved terms
(NG = Named Graphs, PG = Property Graphs, MG = Multilayer Graphs)

RDF RDF* NG PG MG

Edge type/label ✓ ✓ ✓ ✓ ✓
Node label ✓
Edge annotation ✓ ✓ ✓ ✓
Node annotation ✓ ✓ ✓ ✓ ✓
External annotation ✓
Edge as node ✓ ✓ ✓
Edge as nodes ✓ ✓
Arbitrary layers ✓ ✓ ✓
Graph as node ✓
Quotation ✓

This can change, for example, the results returned for queries. If ex-

ternal annotation were deemed essential to support, one could con-

sider a multilayer property graph model, which would add labeling

and property functions to a multilayer graph, or equivalently, two

additional relations alongside the baseMGraph relation, namely

Label(object, label) and Prop(object, attribute, value). This would
enable stricter compatibility with legacy property graph data and

systems. We expand on this in Appendix B.

The final feature, quotation, is useful to describe edges with-

out asserting them; for example, to state that an edge is untrue,

uncertain, refuted, disputed, obsolete, etc. For example, Wikidata

contains the edge Pluto planetinstance of , which is assigned a depre-

cated rank due to being, respectively, obsolete and widely disputed.

The RDF-star W3C Community [13] has defined that quoted edges,

are not asserted by default, but must rather be asserted separately

(a shortcut syntax is provided to quote and assert an edge). In

other models, there is no direct way to indicate whether an edge

is asserted or not asserted without reserved terms. In multilayer

graphs this could be solved by splitting edge ids into asserted and

unasserted ones. Appendix E discusses this further.

5 CONCLUSIONS
Multilayer graphs adopt the natural idea of adding edge ids to

directed labeled edges in order to concisely model higher-arity

relations in graphs without the need for reserved vocabulary or

reification. They can naturally represent popular graph models,

such as RDF and property graphs, and allow for combining the fea-

tures of both models in a novel way. Multilayer graphs are inspired

by concrete data models developed by several independent groups

aiming to support legacy graph models: singleton named graphs
used to query Wikidata with SPARQL [14], the KGTK format used
for knowledge graph processing & analytics [18], the one graph
(1G) model proposed for the Neptune database [19], and the domain
graph model supported by the MillenniumDB database [24]. Our

goal has been to formalize, discuss and draw attention to the ab-

stract data model shared by all these developments, and to highlight

its value for unifying different graph-based data models.

ACKNOWLEDGMENTS
Angles, Hogan, Rojas and Vrgoč were supported by ANID – Millen-

nium Science Initiative Program – Code ICN17_002. Vrgoč was also

supported by Fondo Puente UC 011/2021. D. Schwabe was partially

supported by a grant from CNPq, Brasil.

4

REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutiérrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core

for Future Graph Query Languages. In SIGMOD International Conference on
Management of Data. 1421–1432.

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,

and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40. https://doi.org/10.1145/

3104031

[3] RenzoAngles andClaudio Gutiérrez. 2008. Survey of graph databasemodels. ACM
Comput. Surv. 40, 1 (2008), 1:1–1:39. https://doi.org/10.1145/1322432.1322433

[4] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. 2020. Mapping RDF

Databases to Property Graph Databases. IEEE Access 8 (2020), 86091–86110.

https://doi.org/10.1109/ACCESS.2020.2993117

[5] Pablo Barceló Baeza. 2013. Querying graph databases. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, New York, NY, USA - June 22 - 27, 2013. 175–188. https://doi.org/10.

1145/2463664.2465216

[6] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.

2018. Querying Graphs. Morgan & Claypool Publishers. https://doi.org/10.2200/

S00873ED1V01Y201808DTM051

[7] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Con-

cepts and Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/

rdf11-concepts/

[8] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

In Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD Conference 2018, Houston, TX, USA, June 10-15, 2018. ACM, 1433–1445.

https://doi.org/10.1145/3183713.3190657

[9] William L. Hamilton. 2020. Graph Representation Learning. Morgan & Claypool

Publishers. https://doi.org/10.2200/S01045ED1V01Y202009AIM046

[10] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 Query

Language. W3C Recommendation. https://www.w3.org/TR/sparql11-query/

[11] Olaf Hartig. 2014. Reconciliation of RDF* and Property Graphs. CoRR
abs/1409.3288 (2014). arXiv:1409.3288 http://arxiv.org/abs/1409.3288

[12] Olaf Hartig. 2017. Foundations of RDF⋆ and SPARQL⋆ (An Alternative Ap-

proach to Statement-Level Metadata in RDF). In Proceedings of the 11th Alberto
Mendelzon International Workshop on Foundations of Data Management and the
Web, Montevideo, Uruguay, June 7-9, 2017 (CEURWorkshop Proceedings), Vol. 1912.
CEUR-WS.org. http://ceur-ws.org/Vol-1912/paper12.pdf

[13] Olaf Hartig, Pierre-Antoine Champin, Gregg Kellogg, Andy Seaborne, Dörthe

Arndt, Jeen Broekstra, Bob DuCharme, Ora Lassila, Peter F. Patel-Schneider, Eric

Prud’hommeaux, Ted Thibodeau Jr., and Bryan Thompson. 2021. RDF-star and

SPARQL-star. W3C Draft Community Group Report. https://w3c.github.io/

rdf-star/cg-spec/2021-07-01.html

[14] Daniel Hernández, AidanHogan, andMarkus Krötzsch. 2015. Reifying RDF:What

Works Well With Wikidata?. In International Workshop on Scalable Semantic Web
Knowledge Base Systems (CEUR Workshop Proceedings), Vol. 1457. CEUR-WS.org,

32–47. http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf

[15] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. 2010. Foundations
of Semantic Web Technologies. Chapman and Hall/CRC Press. http://www.

semantic-web-book.org/

[16] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,

Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, SabbirM. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine

Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4 (2021), 71:1–
71:37. https://doi.org/10.1145/3447772

[17] San-Chuan Hung, Miguel Araujo, and Christos Faloutsos. 2016. Distributed com-

munity detection on edge-labeled graphs using Spark. In International Workshop
on Mining and Learning with Graphs (MLG).

[18] Filip Ilievski, Daniel Garijo, Hans Chalupsky, Naren Teja Divvala, Yixiang Yao,

Craig Milo Rogers, Ronpeng Li, Jun Liu, Amandeep Singh, Daniel Schwabe,

and Pedro A. Szekely. 2020. KGTK: A Toolkit for Large Knowledge Graph

Manipulation and Analysis. In International Semantic Web Conference (ISWC).
Springer, 278–293.

[19] Ora Lassila, Michael Schmidt, Brad Bebee, Dave Bechberger, Willem Broekema,

Ankesh Khandelwal, Kelvin Lawrence, Ronak Sharda, and Bryan B. Thomp-

son. 2021. Graph? Yes! Which one? Help! CoRR abs/2110.13348 (2021).

arXiv:2110.13348 https://arxiv.org/abs/2110.13348

[20] Maximilian Marx, Markus Krötzsch, and Veronika Thost. 2017. Logic on MARS:

Ontologies for Generalised Property Graphs. In International Joint Conference on
Artificial Intelligence (IJCAI). ijcai.org, 1188–1194. https://doi.org/10.24963/ijcai.

2017/165

[21] Vinh Nguyen, Olivier Bodenreider, and Amit P. Sheth. 2014. Don’t like RDF

reification?: making statements about statements using singleton property. In

23rd International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea,
April 7-11, 2014, Chin-Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten

Suel (Eds.). ACM, 759–770. https://doi.org/10.1145/2566486.2567973

[22] Peter F. Patel-Schneider and David Martin. 2020. Wikidata on MARS. CoRR
abs/2008.06599 (2020). arXiv:2008.06599 https://arxiv.org/abs/2008.06599

[23] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85. https://doi.org/10.1145/

2629489

[24] Domagoj Vrgoc, Carlos Rojas, Renzo Angles, Marcelo Arenas, Diego Arroyuelo,

Carlos Buil Aranda, Aidan Hogan, Gonzalo Navarro, Cristian Riveros, and Juan

Romero. 2021. MillenniumDB: A Persistent, Open-Source, Graph Database. CoRR
abs/2111.01540 (2021). arXiv:2111.01540 https://arxiv.org/abs/2111.01540

[25] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph

Embedding: A Survey of Approaches and Applications. 29, 12 (Dec. 2017), 2724–

2743. https://doi.org/10.1109/TKDE.2017.2754499

[26] Jim Webber. 2012. A programmatic introduction to Neo4j. In Conference on
Systems, Programming, and Applications: Software for Humanity (SPLASH). ACM,

217–218. https://doi.org/10.1145/2384716.2384777

[27] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Rec. 41, 1
(2012), 50–60. https://doi.org/10.1145/2206869.2206879

APPENDIX
In this appendix we further elaborate on some points made in the

paper. In particular, we discuss:

• How to map RDF, RDF*, and property graphs into multilayer

graphs (Appendix A).

• We discuss multilayer property graphs in a bit more detail

in Appendix B.

• In Appendix C, we discuss how two multilayer graphs can

be merged into a single one.

• Appendix D is dedicated to an abstract model for querying

multilayer graphs.

• We include a detailed discussion on quoted edges in Appen-

dix E.

A FROM LEGACY TO MULTILAYER GRAPHS
Herein we discuss how RDF, RDF* and property graphs can be

mapped to the multilayer graph graph model.

RDF and RDF*. The multilayer graph data model naturally sub-

sumes the RDF graph model, as well as RDF*. To show how RDF is

modeled in multilayer graphs, consider the following edge, claiming

that Michelle Bachelet was the president of Chile.

Michelle Bachelet President of Chileposition held

We can encode this triple in a multilayer graph by storing the

tuple (Michelle Bachelet, position held, President of Chile, e) in
theMGraph relation, where e denotes a unique (potentially auto-

generated) edge id, or equivalently stating that:

γ (e) = (Michelle Bachelet, position held, President of Chile).

The edge id e can be automatically generated. One can thus auto-

matically load an RDF graph into a multilayer graph, by assigning

a new edge id to each triple. The id of the edge itself is not needed

for RDF, but can be used for modeling RDF-star (RDF*) graphs.

If we wished to use the multilayer graph model to capture named

graphs or RDF Datasets [7], we could introduce a reserved term, say

graph, to assign an edge to a graph. Then a quad (s,p,o,д) would
become γ (e1) = (s,p,o), γ (e2) = (e1, graph,д). Edges without a
graph edge could be considered as part of the default graph (or

we could add a reserved default value, if desired. Alternatively,

5

https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1109/ACCESS.2020.2993117
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://www.w3.org/TR/sparql11-query/
http://arxiv.org/abs/1409.3288
http://ceur-ws.org/Vol-1912/paper12.pdf
https://w3c.github.io/rdf-star/cg-spec/2021-07-01.html
https://w3c.github.io/rdf-star/cg-spec/2021-07-01.html
http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
http://www.semantic-web-book.org/
http://www.semantic-web-book.org/
https://doi.org/10.1145/3447772
https://arxiv.org/abs/2110.13348
https://doi.org/10.24963/ijcai.2017/165
https://doi.org/10.24963/ijcai.2017/165
https://doi.org/10.1145/2566486.2567973
https://arxiv.org/abs/2008.06599
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://arxiv.org/abs/2111.01540
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2206869.2206879

they could be assigned to a global default graph that includes all

edges.); optionally, named multilayer graphs could be considered

in the future to support multiple multilayer graphs using a fifth

element (quins).

Property graphs. In order to encode (labeled) property graphs

as a multilayer graph, we need to be able to represent labels and

properties (attribute–value pairs) on both nodes and edges. Edges

already have precisely one label associated with them (as permitted

by Neo4j [26]), while node ids can also double as a single label.

Nodes (and edges) could, if needed, have zero-or-more labels asso-

ciated with them using a reserved label or type term, per RDF(S).

Properties can be represented as outward edges from a given node

or edge id, per, e.g., the start date , replaces , etc., edges in Figure 5.

If we wanted to maintain external annotation as a feature (where

attribute values are not nodes, but rather strings), we would need

the multilayer property graph model discussed in Section 4.

B PROPERTY MULTILAYER GRAPHS
Here we formally define multilayer property graphs.

Functional definition. The functional definition of this concept is

as follows:

Definition B.1. A multilayer property graph is defined as a tuple

G = (O,γ , lab, prop), where:

• (O,γ) is a multilayer graph;

• lab : O → 2
O

is a function assigning a finite set of labels to

an object; and

• prop : O ×O → O is a partial function assigning a value to

a certain property of an object.

Moreover, we assume that for each object o ∈ O , there exists a finite

number of properties p ∈ O such that prop(o,p) is defined.

Relational definition. On the other hand, the relational definition

can be defined in terms of the following three relations:

• MGraph(source,label,target,eid)
• Label(object,label)
• Prop(object,attribute,value).

Notice that we require the value of an attribute for a single object

to be unique (i.e. (object,attribute) is a key for Prop). On the other

hand, an object can have multiple labels. We could then model

Figure 3 with tuples such as (here abbreviating terms slightly):

MGraph(n1, pos held,n2, e1) MGraph(n1, pos held,n2, e2)

Label(n1, human) Label(n2, public office)

Label(e1, pos held) Label(e2, pos held)

Prop(n1, name, "M.Bachelet") Prop(n2, name, "P. of Chile")

Prop(e1, start, "2014-03-11") Prop(e1, end, "2018-03-11")
. . .

and so forth for other properties. The replaces and replaced by values
could be either added as external annotations to the Prop relation,

or as links to nodes representing the people in theMGraph relation.

With this model, one could also simplify the MGraph, and exclude

the label component, since this can be assigned by the relation

Label. However, having a unique edge label is very handy for

indexing purposes, and models precisely what is required by the

Wikidata knowledge graph.

C MERGING MULTILAYER GRAPHS
Assume we wish to merge two multilayer graphsG1 = (O1,γ1) and
G2 = (O2,γ2). We must take care since the most natural definition,

G1 ∪G2 = (O1 ∪O2,γ1 ∪ γ2), may not yield a multilayer graph if

there is a clash of edge ids, i.e., if there exists o ∈ O1 ∩ O2 such

that γ1(o) , γ2(o). In this case, γ1(o) ∪ γ2(o) will no longer even

be a function. We see two general solutions for this. First, we can

define edge ids to be local (similar to blank nodes in RDF) and then

rewrite the edge ids in (say) G2 to distinguish them from all terms

in G1; this is done by MillenniumDB [24]. Second, we can define

edge ids to be global (i.e., externally referenceable) and leave it to

the application to reconcile edge id clashes, which may involve

removing or renaming edge ids (and their corresponding data) from

one multilayer graph, or both; this is done by KGTK [18].

D QUERYING MULTILAYER GRAPHS
Graph query languages are typically founded on basic graph pat-

terns [2, 10]. We can define a basic graph pattern for multilayer

graphs as a pairQ = (X , ξ), where X ⊆ Obj∪Var is a set of objects
and variables, and ξ : X → X × X × X . Given a multilayer graph

G = (O,γ), let µ : Var∩X → O denote a mapping from the variables

of X to O . Then we define the evaluation Q(G) = {µ | µ(ξ) ⊆ γ },
where µ(ξ) is the image of ξ under µ. Path queries can be evaluated

on the directed labeled graph that forms the codomain of γ . Other
relational features can be layered on top of these base queries to

transform or combine sets of solution mappings [2].

E QUOTED EDGES
Here we elaborate a bit more on quoting edges, and provide some

examples. Quotations allow us to to describe edges without assert-

ing them; for example, to state that an edge is untrue, uncertain,

refuted, disputed, obsolete, etc. For example, Wikidata contains

edges claiming that Pluto planetinstance of and Earth diskshape ,

both of which are assigned a deprecated rank due to being, re-

spectively, obsolete and widely disputed. These claims would be

best represented as quoted edges that are defined as deprecated,

but not asserted, such that, for example, if we query for instances

of planet , we should not receive Pluto as a result. On the other

hand, Michelle Bachelet President of Chileposition held could be asserted,

such that, for example, if we query for people who have held the po-

sition of President of Chile , we would return Michelle Bachelet . The RDF-

star W3C Community [13] has defined that quoted edges, such

as Michelle Bachelet President of Chileposition held in Figure 4, are not as-

serted by default, but must rather be asserted separately (a shortcut

syntax is provided to quote and assert an edge). In other models,

there is no direct way to indicate whether an edge is asserted or

not asserted without reserved terms. A potential solution to sup-

port quotation of unasserted edges in multilayer graphs without

reserved vocabulary would be to define two disjoint sets of edges

ids as objects: asserted and unasserted edge ids.

6

	Abstract
	1 Introduction
	2 Existing Graph Data Models
	3 Multilayer graphs
	3.1 Defining multilayer graphs
	3.2 The layering
	3.3 Concrete models using multilayer graphs

	4 Multilayer vs. other graphs
	5 Conclusions
	Acknowledgments
	References
	A From legacy to multilayer graphs
	B Property multilayer graphs
	C Merging multilayer graphs
	D Querying multilayer graphs
	E Quoted edges

